Suppr超能文献

人类属中 M1 牙冠尺寸和牙尖比例的演化。

Evolution of M1 crown size and cusp proportions in the genus Homo.

机构信息

Division of Anthropology, American Museum of Natural History, New York, NY 10024-5192, USA.

出版信息

J Anat. 2009 May;214(5):655-70. doi: 10.1111/j.1469-7580.2009.01064.x.

Abstract

Previous research into tooth crown dimensions and cusp proportions has proved to be a useful way to identify taxonomic differences in Pliocene and Pleistocene fossil hominins. The present study has identified changes in both M(1) crown size and cusp proportions within the genus Homo, with M(1) overall crown size reduction apparently occurring in two main stages. The first stage (a reduction of ca. 17%) is associated with the emergence of Homo ergaster and Homo erectus sensu stricto. The second stage (a reduction of ca. 10%) occurs in Homo sapiens, but the reduced modern human M(1) tooth crown size was only attained in Upper Paleolithic times. The absolute sizes of the individual cusps are highly positively correlated with overall crown size and dental reduction produces a reduction in the absolute size of each of the cusps. Most of the individual cusps scale isometrically with crown size, but the paracone shows a negative allometric relationship, indicating that the reduction in paracone size is less than in the other M(1) cusps. Thus, the phylogenetically oldest cusp in the upper molars also seems to be the most stable cusp (at least in the M(1)). The most striking change in M(1) cusp proportions is a change in the relative size of the areas of the paracone and metacone. The combination of a small relative paracone and a large relative metacone generally characterizes specimens attributed to early Homo, and the presence of this character state in Australopithecus and Paranthropus suggests it may represent the primitive condition for the later part of the hominin clade. In contrast, nearly all later Homo taxa, with the exception of Homo antecessor, show the opposite condition (i.e. a relatively large paracone and a relatively small metacone). This change in the relationship between the relative sizes of the paracone and metacone is related to an isometric reduction of the absolute size of the metacone. This metacone reduction occurs in the context of relative stability in the paracone as crown size decreases. Among later Homo taxa, both Homo heidelbergensis and Homo neanderthalensis show a further reduction of the metacone and an enlargement of the hypocone. Fossil and contemporary H. sapiens samples show a trend toward increasing the relative size of the protocone and decreasing the relative size of the hypocone. In Europe, modern human M(1) cusp proportions are essentially reached during the Upper Paleolithic. Although some variation was documented among the fossil taxa, we suggest that the relative size of the M(1) paracone and metacone areas may be useful for differentiating the earliest members of our genus from subsequent Homo species.

摘要

先前对牙冠尺寸和尖牙比例的研究已被证明是识别上新世和更新世化石原始人类分类学差异的有用方法。本研究在人属中确定了 M(1)牙冠大小和尖牙比例的变化,M(1)牙冠整体尺寸的减小显然发生在两个主要阶段。第一阶段(约 17%的减少)与直立人(Homo ergaster)和匠人(Homo erectus sensu stricto)的出现有关。第二阶段(约 10%的减少)发生在智人(Homo sapiens)中,但现代人类 M(1)牙冠尺寸的减小仅在上旧石器时代达到。个别尖牙的绝对大小与牙冠尺寸高度正相关,而牙齿的减小导致每个尖牙的绝对尺寸减小。大多数个别尖牙与牙冠尺寸等比例缩放,但副尖牙呈负异速关系,表明副尖牙尺寸的减小小于其他 M(1)尖牙。因此,在上臼齿中最古老的尖牙似乎也是最稳定的尖牙(至少在 M(1)中)。M(1)尖牙比例的最显著变化是副尖牙和原尖牙区域大小的相对变化。小的相对副尖牙和大的相对原尖牙的组合通常是归入早期人类的特征,而南方古猿和傍人也具有这种特征状态,表明这可能代表了人类支系后期的原始状态。相比之下,除了直立人(Homo antecessor)外,几乎所有后期的人类分类群都表现出相反的情况(即相对较大的副尖牙和相对较小的原尖牙)。副尖牙和原尖牙相对大小之间的这种关系的变化与绝对尺寸的原尖牙的等比例减小有关。这种原尖牙的减小发生在牙冠尺寸减小的情况下副尖牙相对稳定性的背景下。在后期的人类分类群中,海德堡人(Homo heidelbergensis)和尼安德特人(Homo neanderthalensis)都表现出原尖牙的进一步减小和下尖牙的增大。化石和当代智人样本显示出增加原尖牙相对大小和减小下尖牙相对大小的趋势。在欧洲,现代人 M(1)尖牙比例在旧石器时代晚期基本达到。尽管在化石分类群中记录了一些变化,但我们认为 M(1)副尖牙和原尖牙区域的相对大小可能有助于区分我们属的最早成员与随后的人类物种。

相似文献

1
Evolution of M1 crown size and cusp proportions in the genus Homo.
J Anat. 2009 May;214(5):655-70. doi: 10.1111/j.1469-7580.2009.01064.x.
2
Crown size and cusp proportions in Homo antecessor upper first molars. A comment on Quam et al. 2009.
J Anat. 2011 Feb;218(2):258-62. doi: 10.1111/j.1469-7580.2010.01324.x. Epub 2010 Nov 26.
4
Comparative morphometric analyses of the deciduous molars of Homo naledi from the Dinaledi Chamber, South Africa.
Am J Phys Anthropol. 2021 Feb;174(2):299-314. doi: 10.1002/ajpa.24190. Epub 2020 Dec 8.
5
A morphometric analysis of maxillary molar crowns of Middle-Late Pleistocene hominins.
J Hum Evol. 2004 Sep;47(3):183-98. doi: 10.1016/j.jhevol.2004.07.001.
7
Tooth crown tissue proportions and enamel thickness in Early Pleistocene Homo antecessor molars (Atapuerca, Spain).
PLoS One. 2018 Oct 3;13(10):e0203334. doi: 10.1371/journal.pone.0203334. eCollection 2018.
8
Sexual dimorphism of cusp dimensions in human maxillary molars.
Am J Phys Anthropol. 2005 Dec;128(4):870-7. doi: 10.1002/ajpa.20084.

引用本文的文献

1
Enamel-dentine junction morphology reveals population replacement and mobility in the late prehistoric Middle Nile Valley.
Proc Natl Acad Sci U S A. 2025 Apr 15;122(15):e2419122122. doi: 10.1073/pnas.2419122122. Epub 2025 Mar 31.
2
Dental morphology in Homo habilis and its implications for the evolution of early Homo.
Nat Commun. 2024 Jan 4;15(1):286. doi: 10.1038/s41467-023-44375-9.
3
Genetic influences on dentognathic morphology in the Jirel population of Nepal.
Anat Rec (Hoboken). 2022 Sep;305(9):2137-2157. doi: 10.1002/ar.24857. Epub 2022 Jan 11.
4
Genetic contributions to dental dimensions in brown-mantled tamarins (Saguinus fuscicollis) and rhesus macaques (Macaca mulatta).
Am J Phys Anthropol. 2019 Feb;168(2):292-302. doi: 10.1002/ajpa.23744. Epub 2018 Dec 3.
5
Elastic Properties of Chimpanzee Craniofacial Cortical Bone.
Anat Rec (Hoboken). 2016 Dec;299(12):1718-1733. doi: 10.1002/ar.23466.
6
The earliest unequivocally modern humans in southern China.
Nature. 2015 Oct 29;526(7575):696-9. doi: 10.1038/nature15696. Epub 2015 Oct 14.
7
The Taxonomic and Phylogenetic Affinities of Bunopithecus sericus, a Fossil Hylobatid from the Pleistocene of China.
PLoS One. 2015 Jul 8;10(7):e0131206. doi: 10.1371/journal.pone.0131206. eCollection 2015.
8
Middle Pleistocene hominin teeth from Longtan Cave, Hexian, China.
PLoS One. 2014 Dec 31;9(12):e114265. doi: 10.1371/journal.pone.0114265. eCollection 2014.
9
Shape covariation between the craniofacial complex and first molars in humans.
J Anat. 2014 Aug;225(2):220-31. doi: 10.1111/joa.12202. Epub 2014 Jun 10.
10
First early hominin from central Africa (Ishango, Democratic Republic of Congo).
PLoS One. 2014 Jan 10;9(1):e84652. doi: 10.1371/journal.pone.0084652. eCollection 2014.

本文引用的文献

2
Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya.
Nature. 2007 Aug 9;448(7154):688-91. doi: 10.1038/nature05986.
3
A geometric morphometric analysis of hominin upper first molar shape.
J Hum Evol. 2007 Sep;53(3):272-85. doi: 10.1016/j.jhevol.2007.02.002. Epub 2007 Jun 27.
4
New Neandertal remains from Cova Negra (Valencia, Spain).
J Hum Evol. 2007 Jan;52(1):31-58. doi: 10.1016/j.jhevol.2006.07.011. Epub 2006 Aug 8.
5
Hominin lower second premolar morphology: evolutionary inferences through geometric morphometric analysis.
J Hum Evol. 2006 May;50(5):523-33. doi: 10.1016/j.jhevol.2005.12.004. Epub 2006 Feb 10.
6
Brief communication: Early hominin variability in first molar dental trait frequencies.
Am J Phys Anthropol. 2005 Oct;128(2):477-84. doi: 10.1002/ajpa.20194.
7
Interobserver error involved in independent attempts to measure cusp base areas of Pan M1s.
J Anat. 2004 Oct;205(4):323-31. doi: 10.1111/j.0021-8782.2004.00334.x.
8
Diagnostic differences in mandibular P4 shape between Neandertals and anatomically modern humans.
Am J Phys Anthropol. 2005 Mar;126(3):268-77. doi: 10.1002/ajpa.20037.
9
A morphometric analysis of maxillary molar crowns of Middle-Late Pleistocene hominins.
J Hum Evol. 2004 Sep;47(3):183-98. doi: 10.1016/j.jhevol.2004.07.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验