Suppr超能文献

基于片段的从头设计的骨架跳跃潜力:变异的机遇与局限

Scaffold-hopping potential of fragment-based de novo design: the chances and limits of variation.

作者信息

Krueger Bjoern A, Dietrich Axel, Baringhaus Karl-Heinz, Schneider Gisbert

机构信息

Johann Wolfgang Goethe-Universität, Institut für Organische Chemie und Chemische Biologie, Siesmayerstrasse 70, Frankfurt am Main, Germany.

出版信息

Comb Chem High Throughput Screen. 2009 May;12(4):383-96. doi: 10.2174/138620709788167971.

Abstract

The identification of new lead structures is a pivotal task in early drug discovery. Molecular de novo design of ligand structures has been successfully applied in various drug discovery projects. Still, the question of the scaffold hopping potential of drug design by adaptive evolutionary optimization has been left unanswered. It was unclear whether de novo design is actually able to leap away from given chemotypes ("activity islands"), allowing for rescaffolding of compounds. We have addressed these questions by scrutinizing different scoring functions of our de novo design software Flux for their ability to enable scaffold-hops for various target classes. We evaluated both the potential bioactivity and the scaffold diversity of de novo generated structures. For several target classes, known lead structures were reconstructed by the de novo algorithm ("lead-hopping"). We demonstrate that for one or multiple templates of a given chemotype, other chemotypes are reached during de novo compound generation, thus indicating successful scaffold-hops.

摘要

在早期药物发现中,识别新的先导结构是一项关键任务。配体结构的分子从头设计已成功应用于各种药物发现项目。然而,通过适应性进化优化进行药物设计的骨架跳跃潜力问题仍未得到解答。尚不清楚从头设计是否真的能够跳脱给定的化学类型(“活性岛”),从而实现化合物的骨架重构。我们通过仔细研究我们的从头设计软件Flux的不同评分函数在为各种靶标类别实现骨架跳跃方面的能力,来解决这些问题。我们评估了从头生成结构的潜在生物活性和骨架多样性。对于几个靶标类别,通过从头算法(“先导跳跃”)重建了已知的先导结构。我们证明,对于给定化学类型的一个或多个模板,在从头生成化合物的过程中会达到其他化学类型,从而表明成功实现了骨架跳跃。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验