Jasuja Ravi, Ulloor Jagadish, Yengo Christopher M, Choong Karen, Istomin Andrei Y, Livesay Dennis R, Jacobs Donald J, Swerdloff Ronald S, Miksovská Jaroslava, Larsen Randy W, Bhasin Shalender
Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston, Massachusetts 02199, USA.
Mol Endocrinol. 2009 Aug;23(8):1231-41. doi: 10.1210/me.2008-0304. Epub 2009 May 14.
Ligand-induced conformational perturbations in androgen receptor (AR) are important in coactivator recruitment and transactivation. However, molecular rearrangements in AR ligand-binding domain (AR-LBD) associated with agonist binding and their kinetic and thermodynamic parameters are poorly understood. We used steady-state second-derivative absorption and emission spectroscopy, pressure and temperature perturbations, and 4,4'-bis-anilinonaphthalene 8-sulfonate (bis-ANS) partitioning to determine the kinetics and thermodynamics of the conformational changes in AR-LBD after dihydrotestosterone (DHT) binding. In presence of DHT, the second-derivative absorption spectrum showed a red shift and a change in peak-to-peak distance. Emission intensity increased upon DHT binding, and center of spectral mass was blue shifted, denoting conformational changes resulting in more hydrophobic environment for tyrosines and tryptophans within a more compact DHT-bound receptor. In pressure perturbation calorimetry, DHT-induced energetic stabilization increased the Gibbs free energy of unfolding to 8.4 +/- 1.3 kcal/mol from 3.5 +/- 1.6 kcal/mol. Bis-ANS partitioning studies revealed that upon DHT binding, AR-LBD underwent biphasic rearrangement with a high activation energy (13.4 kcal/mol). An initial, molten globule-like burst phase (k approximately 30 sec(-1)) with greater solvent accessibility was followed by rearrangement (k approximately 0.01 sec(-1)), leading to a more compact conformation than apo-AR-LBD. Molecular simulations demonstrated unique sensitivity of tyrosine and tryptophan residues during pressure unfolding with rearrangement of residues in the coactivator recruitment surfaces distant from the ligand-binding pocket. In conclusion, DHT binding leads to energetic stabilization of AR-LBD domain and substantial rearrangement of residues distant from the ligand-binding pocket. DHT binding to AR-LBD involves biphasic receptor rearrangement including population of a molten globule-like intermediate state.
配体诱导的雄激素受体(AR)构象扰动在共激活因子募集和反式激活中起重要作用。然而,与激动剂结合相关的AR配体结合域(AR-LBD)中的分子重排及其动力学和热力学参数仍知之甚少。我们使用稳态二阶导数吸收和发射光谱、压力和温度扰动以及4,4'-双苯胺基萘8-磺酸盐(bis-ANS)分配来确定二氢睾酮(DHT)结合后AR-LBD构象变化的动力学和热力学。在DHT存在下,二阶导数吸收光谱显示红移和峰峰距离变化。DHT结合后发射强度增加,光谱质量中心蓝移,表明构象变化导致在更紧凑的DHT结合受体中酪氨酸和色氨酸所处的环境更疏水。在压力扰动量热法中,DHT诱导的能量稳定作用使展开的吉布斯自由能从3.5±1.6千卡/摩尔增加到8.4±1.3千卡/摩尔。Bis-ANS分配研究表明,DHT结合后,AR-LBD经历了具有高活化能(13.4千卡/摩尔)的双相重排。最初是类似熔球的快速爆发阶段(k约为30秒-1),溶剂可及性更高,随后是重排(k约为0.01秒-1),导致比无配体AR-LBD更紧凑的构象。分子模拟表明,在压力展开过程中,酪氨酸和色氨酸残基具有独特的敏感性,同时远离配体结合口袋的共激活因子募集表面的残基发生重排。总之,DHT结合导致AR-LBD结构域的能量稳定以及远离配体结合口袋的残基的大量重排。DHT与AR-LBD的结合涉及双相受体重排,包括熔球样中间态的形成。