Suppr超能文献

基于微阵列的分类器和预后模型可识别出具有不同临床结局以及骨髓增生异常综合征向急性髓系白血病转化高风险的亚组。

Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome.

作者信息

Mills Ken I, Kohlmann Alexander, Williams P Mickey, Wieczorek Lothar, Liu Wei-min, Li Rachel, Wei Wen, Bowen David T, Loeffler Helmut, Hernandez Jesus M, Hofmann Wolf-Karsten, Haferlach Torsten

机构信息

Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom.

出版信息

Blood. 2009 Jul 30;114(5):1063-72. doi: 10.1182/blood-2008-10-187203. Epub 2009 May 14.

Abstract

The diagnosis of myelodysplastic syndrome (MDS) currently relies primarily on the morphologic assessment of the patient's bone marrow and peripheral blood cells. Moreover, prognostic scoring systems rely on observer-dependent assessments of blast percentage and dysplasia. Gene expression profiling could enhance current diagnostic and prognostic systems by providing a set of standardized, objective gene signatures. Within the Microarray Innovations in LEukemia study, a diagnostic classification model was investigated to distinguish the distinct subclasses of pediatric and adult leukemia, as well as MDS. Overall, the accuracy of the diagnostic classification model for subtyping leukemia was approximately 93%, but this was not reflected for the MDS samples giving only approximately 50% accuracy. Discordant samples of MDS were classified either into acute myeloid leukemia (AML) or "none-of-the-targets" (neither leukemia nor MDS) categories. To clarify the discordant results, all submitted 174 MDS samples were externally reviewed, although this did not improve the molecular classification results. However, a significant correlation was noted between the AML and "none-of-the-targets" categories and prognosis, leading to a prognostic classification model to predict for time-dependent probability of leukemic transformation. The prognostic classification model accurately discriminated patients with a rapid transformation to AML within 18 months from those with more indolent disease.

摘要

骨髓增生异常综合征(MDS)的诊断目前主要依赖于对患者骨髓和外周血细胞的形态学评估。此外,预后评分系统依赖于对原始细胞百分比和发育异常的观察者依赖评估。基因表达谱分析可以通过提供一组标准化、客观的基因特征来增强当前的诊断和预后系统。在白血病微阵列创新研究中,研究了一种诊断分类模型,以区分儿童和成人白血病以及MDS的不同亚类。总体而言,白血病亚型诊断分类模型的准确率约为93%,但MDS样本的准确率仅约为50%,未体现出该准确率。MDS的不一致样本被分类为急性髓系白血病(AML)或“非目标”(既不是白血病也不是MDS)类别。为了阐明不一致的结果,对提交的所有174份MDS样本进行了外部审查,尽管这并未改善分子分类结果。然而,AML和“非目标”类别与预后之间存在显著相关性,从而产生了一个预后分类模型,用于预测白血病转化的时间依赖性概率。该预后分类模型准确地区分了在18个月内迅速转化为AML的患者和病情较为惰性的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验