Zhou Jie, Chen Fanglin, Gu Jinwei
Department of Automation, Tsinghua University, Beijing 100084, China.
IEEE Trans Pattern Anal Mach Intell. 2009 Jul;31(7):1239-50. doi: 10.1109/TPAMI.2008.188.
Fingerprint analysis is typically based on the location and pattern of detected singular points in the images. These singular points (cores and deltas) not only represent the characteristics of local ridge patterns but also determine the topological structure (i.e., fingerprint type) and largely influence the orientation field. In this paper, we propose a novel algorithm for singular points detection. After an initial detection using the conventional Poincaré Index method, a so-called DORIC feature is used to remove spurious singular points. Then, the optimal combination of singular points is selected to minimize the difference between the original orientation field and the model-based orientation field reconstructed using the singular points. A core-delta relation is used as a global constraint for the final selection of singular points. Experimental results show that our algorithm is accurate and robust, giving better results than competing approaches. The proposed detection algorithm can also be used for more general 2D oriented patterns, such as fluid flow motion, and so forth.
指纹分析通常基于图像中检测到的奇异点的位置和模式。这些奇异点(中心点和三角点)不仅代表局部纹路模式的特征,还决定拓扑结构(即指纹类型),并在很大程度上影响方向场。在本文中,我们提出了一种用于奇异点检测的新算法。在使用传统的庞加莱指数方法进行初始检测之后,使用一种所谓的DORIC特征来去除虚假奇异点。然后,选择奇异点的最佳组合,以最小化原始方向场与使用奇异点重建的基于模型的方向场之间的差异。中心点 - 三角点关系用作奇异点最终选择的全局约束。实验结果表明,我们的算法准确且稳健,比竞争方法给出了更好的结果。所提出的检测算法还可用于更一般的二维定向模式,如流体流动运动等。