Suppr超能文献

一种基于二维傅里叶展开的指纹方向模型(FOMFE)及其在奇点检测和指纹索引中的应用。

A fingerprint orientation model based on 2D Fourier expansion (FOMFE) and its application to singular-point detection and fingerprint indexing.

作者信息

Wang Yi, Hu Jiankun, Phillips Damien

机构信息

School of Computer Science and IT, RMIT University, Melbourne, Australia.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Apr;29(4):573-85. doi: 10.1109/TPAMI.2007.1003.

Abstract

In this paper, we have proposed a fingerprint orientation model based on 2D Fourier expansions (FOMFE) in the phase plane. The FOMFE does not require prior knowledge of singular points (SPs). It is able to describe the overall ridge topology seamlessly, including the SP regions, even for noisy fingerprints. Our statistical experiments on a public database show that the proposed FOMFE can significantly improve the accuracy of fingerprint feature extraction and thus that of fingerprint matching. Moreover, the FOMFE has a low-computational cost and can work very efficiently on large fingerprint databases. The FOMFE provides a comprehensive description for orientation features, which has enabled its beneficial use in feature-related applications such as fingerprint indexing. Unlike most indexing schemes using raw orientation data, we exploit FOMFE model coefficients to generate the feature vector. Our indexing experiments show remarkable results using different fingerprint databases.

摘要

在本文中,我们提出了一种基于二维傅里叶展开的指纹方向模型(FOMFE),该模型位于相位平面中。FOMFE不需要奇异点(SPs)的先验知识。它能够无缝描述整个纹线拓扑结构,包括SP区域,即使对于有噪声的指纹也是如此。我们在一个公共数据库上进行的统计实验表明,所提出的FOMFE可以显著提高指纹特征提取的准确性,进而提高指纹匹配的准确性。此外,FOMFE具有较低的计算成本,并且能够在大型指纹数据库上高效运行。FOMFE为方向特征提供了全面的描述,这使得它在诸如指纹索引等与特征相关的应用中得到了有益的应用。与大多数使用原始方向数据的索引方案不同,我们利用FOMFE模型系数来生成特征向量。我们的索引实验在使用不同指纹数据库时显示出了显著的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验