Suppr超能文献

Surfactant mobility in nanoporous glass films.

作者信息

Kim Taek-Soo, Mackie Katherine, Zhong Qiping, Peterson Maria, Konno Tomohisa, Dauskardt Reinhold H

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA.

出版信息

Nano Lett. 2009 Jun;9(6):2427-32. doi: 10.1021/nl901138p.

Abstract

Polymer molecules when physically confined at nanometer length scales diffuse nonclassically and very differently depending on their molecular weight and the nature of the confinement. Long polymers that exhibit "snakelike" reptation based mobility in melts may diffuse faster in confined nanometer sized cylinders with pore diameter d approximately 15 nm, and short polymers subject to Rouse dynamics have shown signatures of reptation and slower diffusion when confined in nanoporous glass with d approximately 4 nm. However, the mobility of short polymers with radii of gyration similar to a smaller pore diameter (d < or = 2.1 nm) but with extended lengths well larger than the pore diameter has not as yet been studied. In this work, we demonstrate that those short molecules including nonionic surfactants can readily diffuse in strongly hydrophobic nanoporous glasses film with d < or = 2.1 nm. The diffusivity was found sensitive to molecular weight, hydrophilic-lipophilic balance, and molecular structure of surfactants. Remarkably, analysis of the measured diffusion coefficients reveals that short-chain surfactants exhibit signature of reptation based diffusion in the nanoscopic pore confinements. Such reptation mobility in agreement with theoretical predictions is not even observed in reptating polymer melts due to fluctuations of the entanglement pathway. The fixed pathways in the interconnected nanoporous films provide ideal nanoscale environments to explore mobility of confined molecules, and the results have implications for a number of technologies where nanoporous materials are in contact with surfactant molecules.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验