Suppr超能文献

使用毒理基因组数据库对多个毒理学终点进行评分。

Scoring multiple toxicological endpoints using a toxicogenomic database.

作者信息

Kiyosawa Naoki, Ando Yosuke, Watanabe Kyoko, Niino Noriyo, Manabe Sunao, Yamoto Takashi

机构信息

Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan.

出版信息

Toxicol Lett. 2009 Jul 24;188(2):91-7. doi: 10.1016/j.toxlet.2009.03.011. Epub 2009 Mar 24.

Abstract

As information regarding microarray data sets and toxicogenomic biomarkers grows rapidly, the process of analyzing data and interpreting the results is increasingly complicated. To facilitate data analysis, a simple expression ratio-based scoring method called the TGP1 score was previously proposed [Kiyosawa, N., Shiwaku, K., Hirode, M., Omura, K., Uehara, T., Shimizu, T., Mizukawa, Y., Miyagishima, T., Ono, A., Nagao, T., Urushidani, T., 2006. Utilization of a one-dimensional score for surveying chemical-induced changes in expression levels of multiple biomarker gene sets using a large-scale toxicogenomics database. J. Toxicol. Sci. 31, 433-448]. Although the TGP1 score has demonstrated its efficacy for rapid comprehension of large-scale toxicogenomic data sets, inclusion of low quality gene expression data in the biomarker gene set produced flaws in the calculated score. To overcome this shortcoming, we tested a new scoring method called the differentially expressed gene score (D-score), where Detection Call as well as signal log ratios generated by MAS5 algorithm on Affymetrix GeneChip data were considered for the calculation. Four prototypical toxicants, namely acetaminophen, phenobarbital, clofibrate and acetamidofluorene, were used for detailed analysis. A toxicogenomics database (TG-GATEs) was utilized as a reference data set. The D-score successfully alleviated the effects of low quality data on the score calculation, and captured the overall direction of expression changes as well as the magnitude of expression change level of a set of genes, highlighting the affected toxicological endpoints elicited by chemical treatment. The D-score will be useful for high-throughput toxicity screening using a toxicogenomic database and biomarkers.

摘要

随着有关微阵列数据集和毒理基因组生物标志物的信息迅速增加,数据分析和结果解读的过程日益复杂。为便于数据分析,先前提出了一种基于简单表达比的评分方法,即TGP1评分法[清泽直、志和久、广出正明、大村健、上原彻、清水隆、水川洋、宫木岛彻、小野晃、长尾隆、漆谷达仁,2006年。利用一维评分法通过大规模毒理基因组数据库调查化学物质诱导的多个生物标志物基因集表达水平的变化。《毒理学杂志》31卷,433 - 448页]。尽管TGP1评分法已证明其在快速理解大规模毒理基因组数据集方面的有效性,但生物标志物基因集中包含的低质量基因表达数据在计算得分时产生了缺陷。为克服这一缺点,我们测试了一种新的评分方法,即差异表达基因评分法(D评分法),该方法在计算时考虑了Affymetrix基因芯片数据上由MAS5算法生成的检测调用以及信号对数比。使用四种典型毒物(即对乙酰氨基酚、苯巴比妥、氯贝丁酯和乙酰氨基芴)进行详细分析。利用一个毒理基因组数据库(TG - GATEs)作为参考数据集。D评分法成功减轻了低质量数据对得分计算的影响,并捕捉了一组基因表达变化的总体方向以及表达变化水平的幅度,突出了化学处理引发的受影响毒理学终点。D评分法将有助于利用毒理基因组数据库和生物标志物进行高通量毒性筛选。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验