Nie Alex Y, McMillian Michael, Parker J Brandon, Leone Angelique, Bryant Stewart, Yieh Lynn, Bittner Anton, Nelson Jay, Carmen Andrew, Wan Jackson, Lord Peter G
Johnson & Johnson Pharmaceutical Research & Development, LLC, Raritan, New Jersey, USA.
Mol Carcinog. 2006 Dec;45(12):914-33. doi: 10.1002/mc.20205.
Toxicogenomics technology defines toxicity gene expression signatures for early predictions and hypotheses generation for mechanistic studies, which are important approaches for evaluating toxicity of drug candidate compounds. A large gene expression database built using cDNA microarrays and liver samples treated with over one hundred paradigm compounds was mined to determine gene expression signatures for nongenotoxic carcinogens (NGTCs). Data were obtained from male rats treated for 24 h. Training/testing sets of 24 NGTCs and 28 noncarcinogens were used to select genes. A semiexhaustive, nonredundant gene selection algorithm yielded six genes (nuclear transport factor 2, NUTF2; progesterone receptor membrane component 1, Pgrmc1; liver uridine diphosphate glucuronyltransferase, phenobarbital-inducible form, UDPGTr2; metallothionein 1A, MT1A; suppressor of lin-12 homolog, Sel1h; and methionine adenosyltransferase 1, alpha, Mat1a), which identified NGTCs with 88.5% prediction accuracy estimated by cross-validation. This six genes signature set also predicted NGTCs with 84% accuracy when samples were hybridized to commercially available CodeLink oligo-based microarrays. To unveil molecular mechanisms of nongenotoxic carcinogenesis, 125 differentially expressed genes (P<0.01) were selected by Student's t-test. These genes appear biologically relevant, of 71 well-annotated genes from these 125 genes, 62 were overrepresented in five biochemical pathway networks (most linked to cancer), and all of these networks were linked by one gene, c-myc. Gene expression profiling at early time points accurately predicts NGTC potential of compounds, and the same data can be mined effectively for other toxicity signatures. Predictive genes confirm prior work and suggest pathways critical for early stages of carcinogenesis.
毒理基因组学技术定义了毒性基因表达特征,用于早期预测和生成用于机制研究的假设,这些都是评估候选药物化合物毒性的重要方法。利用cDNA微阵列和用一百多种范例化合物处理过的肝脏样本构建了一个大型基因表达数据库,以确定非遗传毒性致癌物(NGTC)的基因表达特征。数据取自经处理24小时的雄性大鼠。使用24种NGTC和28种非致癌物的训练/测试集来选择基因。一种半穷举、非冗余的基因选择算法产生了六个基因(核转运因子2,NUTF2;孕酮受体膜成分1,Pgrmc1;肝脏尿苷二磷酸葡萄糖醛酸转移酶,苯巴比妥诱导型,UDPGTr2;金属硫蛋白1A,MT1A;lin-12同源物抑制因子,Sel1h;以及甲硫氨酸腺苷转移酶1α,Mat1a),通过交叉验证估计,这些基因识别NGTC的预测准确率为88.5%。当样本与市售的基于CodeLink寡核苷酸的微阵列杂交时,这个六个基因的特征集预测NGTC的准确率也为84%。为了揭示非遗传毒性致癌作用的分子机制,通过学生t检验选择了125个差异表达基因(P<0.01)。这些基因似乎具有生物学相关性,在这125个基因中,有71个注释良好的基因,其中62个在五个生化途径网络(大多数与癌症相关)中过度表达,并且所有这些网络都由一个基因c-myc连接。早期时间点的基因表达谱分析准确地预测了化合物的NGTC潜力,并且相同的数据可以有效地挖掘其他毒性特征。预测基因证实了先前的工作,并提示了对致癌作用早期阶段至关重要的途径。