Suppr超能文献

砷酸盐诱导小鼠模型中的母体葡萄糖不耐受和神经管缺陷。

Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model.

作者信息

Hill Denise S, Wlodarczyk Bogdan J, Mitchell Laura E, Finnell Richard H

机构信息

Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, 77030, USA.

出版信息

Toxicol Appl Pharmacol. 2009 Aug 15;239(1):29-36. doi: 10.1016/j.taap.2009.05.009. Epub 2009 May 14.

Abstract

BACKGROUND

Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals.

OBJECTIVES

We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment.

METHODS

We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), l-methionine (L-Met), N-tert-Butyl-alpha-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects.

RESULTS

Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p=0.0260). Arsenate caused NTDs (100%, p<0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%.

CONCLUSIONS

IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.

摘要

背景

流行病学研究表明,环境砷(As)暴露与2型糖尿病风险增加有关。孕期高血糖是神经管缺陷(NTDs)的一个重要风险因素,NTDs是第二常见的结构性出生缺陷。砷(As)作为一种疑似致畸物,可在实验动物中诱发NTDs。

目的

我们采用了一种在砷对早期神经发育致畸性研究中常用的成熟给药方案,研究母体葡萄糖稳态破坏是否是砷酸盐诱导NTDs的原因。

方法

我们评估了LM/Bc/Fnn小鼠腹腔内(IP)暴露于9.6mg/kg砷(以砷酸钠形式)的致畸性以及对母体血浆葡萄糖和胰岛素水平的影响。研究了选定的化合物(胰岛素丸、硒酸钠(SS)、N-乙酰半胱氨酸(NAC)、L-甲硫氨酸(L-Met)、N-叔丁基-α-苯基硝酮(PBN))减轻砷酸盐作用的潜力。

结果

在腹腔内葡萄糖耐量试验(IPGTT)期间,砷酸盐导致显著的血糖升高。在葡萄糖激发前(砷酸盐组,0.55ng/dl;对照组,0.48ng/dl)或激发后(砷酸盐组,1.09ng/dl;对照组,0.81ng/dl),砷酸盐组和对照组母鼠的胰岛素水平无差异。砷酸盐组母鼠的HOMA-IR指数(3.9)高于对照组(2.5)(p=0.0260)。砷酸盐导致了NTDs(100%,p<0.0001)。胰岛素丸和NAC是最成功的挽救剂,将NTDs发生率分别降低到45%和35%。

结论

IPGTT、胰岛素检测以及HOMA-IR结果表明,葡萄糖刺激的胰岛素分泌略有不足以及存在葡萄糖不耐受特征性的胰岛素抵抗。胰岛素成功预防砷酸盐诱导的NTDs,这证明这些砷酸盐诱导的NTDs继发于母体血糖升高。NAC的挽救作用并未恢复母体葡萄糖或胰岛素水平,这表明氧化破坏起到了一定作用。

相似文献

1
Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model.
Toxicol Appl Pharmacol. 2009 Aug 15;239(1):29-36. doi: 10.1016/j.taap.2009.05.009. Epub 2009 May 14.
2
Reproductive consequences of oral arsenate exposure during pregnancy in a mouse model.
Birth Defects Res B Dev Reprod Toxicol. 2008 Feb;83(1):40-7. doi: 10.1002/bdrb.20142.
3
Arsenate-induced neural tube defects not influenced by constant rate administration of folic acid.
Pediatr Res. 1986 Aug;20(8):761-2. doi: 10.1203/00006450-198608000-00012.
4
Comparative effects of single intraperitoneal or oral doses of sodium arsenate or arsenic trioxide during in utero development.
Teratology. 1999 Nov;60(5):283-91. doi: 10.1002/(SICI)1096-9926(199911)60:5<283::AID-TERA9>3.0.CO;2-7.
5
Arsenic-induced gene expression changes in the neural tube of folate transport defective mouse embryos.
Neurotoxicology. 2006 Jul;27(4):547-57. doi: 10.1016/j.neuro.2006.02.005. Epub 2006 Apr 18.
7
Arsenic-induced congenital malformations in genetically susceptible folate binding protein-2 knockout mice.
Toxicol Appl Pharmacol. 2001 Dec 15;177(3):238-46. doi: 10.1006/taap.2001.9303.
8
Arsenic-induced neural tube defects in mice: alterations in cell cycle gene expression.
Reprod Toxicol. 1996 Nov-Dec;10(6):447-54. doi: 10.1016/s0890-6238(96)00131-1.
10
Oxidative Stress and Apoptosis in Benzo[a]pyrene-Induced Neural Tube Defects.
Free Radic Biol Med. 2018 Feb 20;116:149-158. doi: 10.1016/j.freeradbiomed.2018.01.004. Epub 2018 Jan 5.

引用本文的文献

1
Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults.
Cochrane Database Syst Rev. 2021 Oct 18;10(10):CD012649. doi: 10.1002/14651858.CD012649.pub2.
2
Resveratrol attenuates arsenic-induced cognitive deficits via modulation of Estrogen-NMDAR-BDNF signalling pathway in female mouse hippocampus.
Psychopharmacology (Berl). 2021 Sep;238(9):2485-2502. doi: 10.1007/s00213-021-05871-2. Epub 2021 May 28.
3
Urinary total arsenic and arsenic methylation capacity in pregnancy and gestational diabetes mellitus: A case-control study.
Chemosphere. 2021 May;271:129828. doi: 10.1016/j.chemosphere.2021.129828. Epub 2021 Feb 2.
4
Environmental neglect: endocrine disruptors as underappreciated but potentially modifiable diabetes risk factors.
Diabetologia. 2019 Oct;62(10):1811-1822. doi: 10.1007/s00125-019-4940-z. Epub 2019 Aug 27.
5
Braving the Element: Pancreatic β-Cell Dysfunction and Adaptation in Response to Arsenic Exposure.
Front Endocrinol (Lausanne). 2019 Jun 14;10:344. doi: 10.3389/fendo.2019.00344. eCollection 2019.
6
Non-monotonic dose-response effects of arsenic on glucose metabolism.
Toxicol Appl Pharmacol. 2019 Aug 15;377:114605. doi: 10.1016/j.taap.2019.114605. Epub 2019 Jun 3.
7
Heightened susceptibility: A review of how pregnancy and chemical exposures influence maternal health.
Reprod Toxicol. 2020 Mar;92:14-56. doi: 10.1016/j.reprotox.2019.04.004. Epub 2019 May 2.
8
Environmental Toxicant Exposures and Type 2 Diabetes Mellitus: Two Interrelated Public Health Problems on the Rise.
Curr Opin Toxicol. 2018 Feb;7:52-59. doi: 10.1016/j.cotox.2017.09.003. Epub 2017 Oct 12.
10
Polluted Pathways: Mechanisms of Metabolic Disruption by Endocrine Disrupting Chemicals.
Curr Environ Health Rep. 2017 Jun;4(2):208-222. doi: 10.1007/s40572-017-0137-0.

本文引用的文献

1
Arsenic exposure and prevalence of type 2 diabetes in US adults.
JAMA. 2008 Aug 20;300(7):814-22. doi: 10.1001/jama.300.7.814.
2
Reproductive consequences of oral arsenate exposure during pregnancy in a mouse model.
Birth Defects Res B Dev Reprod Toxicol. 2008 Feb;83(1):40-7. doi: 10.1002/bdrb.20142.
3
Inorganic arsenic exposure and type 2 diabetes mellitus in Mexico.
Environ Res. 2007 Jul;104(3):383-9. doi: 10.1016/j.envres.2007.03.004. Epub 2007 May 1.
4
Reactive oxygen species as a signal in glucose-stimulated insulin secretion.
Diabetes. 2007 Jul;56(7):1783-91. doi: 10.2337/db06-1601. Epub 2007 Mar 30.
6
Oxidative stress as a mechanism of teratogenesis.
Birth Defects Res C Embryo Today. 2006 Dec;78(4):293-307. doi: 10.1002/bdrc.20085.
8
Diagnosis and classification of diabetes mellitus.
Diabetes Care. 2007 Jan;30 Suppl 1:S42-7. doi: 10.2337/dc07-S042.
9
Standards of medical care in diabetes--2007.
Diabetes Care. 2007 Jan;30 Suppl 1:S4-S41. doi: 10.2337/dc07-S004.
10
Arsenicals in maternal and fetal mouse tissues after gestational exposure to arsenite.
Toxicology. 2006 Jul 5;224(1-2):147-55. doi: 10.1016/j.tox.2006.04.041. Epub 2006 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验