Muhlich Matthias, Aach Til
Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany.
IEEE Trans Image Process. 2009 Jul;18(7):1424-37. doi: 10.1109/TIP.2009.2019307. Epub 2009 May 12.
Estimation of local orientations in multivariate signals is an important problem in image processing and computer vision. This general problem formulation also covers optical flow estimation, which can be regarded as orientation estimation in space-time-volumes. Modelling a signal using only a single orientation, however, is often too restrictive, since occlusions and transparencies occur frequently, thus necessitating the modelling and analysis of multiple orientations. We, therefore, develop a unifying mathematical model for multiple orientations: Beyond describing an arbitrary number of orientations in scalar- and vector-valued image data such as color image sequences, it allows the unified treatment of additively and occludingly superimposed oriented structures as well as of combinations of these. Based on this model, we describe estimation schemes for an arbitrary number of additively or occludingly superimposed orientations in images. We confirm the performance of our framework on both synthetic and real image data.
多元信号中局部方向的估计是图像处理和计算机视觉中的一个重要问题。这个一般的问题表述也涵盖了光流估计,它可以被视为时空体积中的方向估计。然而,仅使用单个方向对信号进行建模通常过于受限,因为遮挡和透明度经常出现,因此需要对多个方向进行建模和分析。因此,我们开发了一个用于多个方向的统一数学模型:除了描述标量和矢量值图像数据(如彩色图像序列)中的任意数量的方向外,它还允许对相加和遮挡叠加的定向结构以及这些结构的组合进行统一处理。基于这个模型,我们描述了图像中任意数量的相加或遮挡叠加方向的估计方案。我们在合成图像数据和真实图像数据上都证实了我们框架的性能。