Yu Wen, de Jesús Rubio José
Departamento de Control Automático, CINVESTAV-IPN, México D.F. 07360, México.
IEEE Trans Neural Netw. 2009 Jun;20(6):983-91. doi: 10.1109/TNN.2009.2015079. Epub 2009 May 15.
Bounding ellipsoid (BE) algorithms offer an attractive alternative to traditional training algorithms for neural networks, for example, backpropagation and least squares methods. The benefits include high computational efficiency and fast convergence speed. In this paper, we propose an ellipsoid propagation algorithm to train the weights of recurrent neural networks for nonlinear systems identification. Both hidden layers and output layers can be updated. The stability of the BE algorithm is proven.
边界椭球(BE)算法为神经网络的传统训练算法(例如反向传播算法和最小二乘法)提供了一种有吸引力的替代方案。其优点包括高计算效率和快速收敛速度。在本文中,我们提出了一种椭球传播算法来训练递归神经网络的权重,用于非线性系统辨识。隐藏层和输出层均可更新。证明了BE算法的稳定性。