Suppr超能文献

蓝藻集胞藻PCC 6803中延伸因子G的氧化还原状态对翻译的调控

Regulation of translation by the redox state of elongation factor G in the cyanobacterium Synechocystis sp. PCC 6803.

作者信息

Kojima Kouji, Motohashi Ken, Morota Takuya, Oshita Masaru, Hisabori Toru, Hayashi Hidenori, Nishiyama Yoshitaka

机构信息

Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.

出版信息

J Biol Chem. 2009 Jul 10;284(28):18685-91. doi: 10.1074/jbc.M109.015131. Epub 2009 May 15.

Abstract

Elongation factor G (EF-G), a key protein in translational elongation, was identified as a primary target of inactivation by reactive oxygen species within the translational machinery of the cyanobacterium Synechocystis sp. PCC 6803 (Kojima, K., Oshita, M., Nanjo, Y., Kasai, K., Tozawa, Y., Hayashi, H., and Nishiyama, Y. (2007) Mol. Microbiol. 65, 936-947). In the present study, we found that inactivation of EF-G (Slr1463) by H(2)O(2) was attributable to the oxidation of two specific cysteine residues and formation of a disulfide bond. Substitution of these cysteine residues by serine residues protected EF-G from inactivation by H(2)O(2) and allowed the EF-G to mediate translation in a translation system in vitro that had been prepared from Synechocystis. The disulfide bond in oxidized EF-G was reduced by thioredoxin, and the resultant reduced form of EF-G regained the activity to mediate translation in vitro. Western blotting analysis showed that levels of the oxidized form of EF-G increased under strong light in a mutant that lacked NADPH-thioredoxin reductase, indicating that EF-G is reduced by thioredoxin in vivo. These observations suggest that the translational machinery is regulated by the redox state of EF-G, which is oxidized by reactive oxygen species and reduced by thioredoxin, a transmitter of reducing signals generated by the photosynthetic transport of electrons.

摘要

延伸因子G(EF-G)是翻译延伸过程中的关键蛋白,被确定为蓝藻集胞藻PCC 6803翻译机制中活性氧导致失活的主要靶点(小岛,K.,大下,M.,南条,Y.,笠井,K.,户泽,Y.,林,H.,和西山,Y.(2007年)《分子微生物学》65卷,936 - 947页)。在本研究中,我们发现H₂O₂导致的EF-G(Slr1463)失活归因于两个特定半胱氨酸残基的氧化和二硫键的形成。用丝氨酸残基取代这些半胱氨酸残基可保护EF-G不被H₂O₂失活,并使EF-G在由集胞藻制备的体外翻译系统中介导翻译。氧化型EF-G中的二硫键被硫氧还蛋白还原,还原后的EF-G恢复了在体外介导翻译的活性。蛋白质免疫印迹分析表明,在缺乏NADPH-硫氧还蛋白还原酶的突变体中,强光下EF-G氧化形式的水平增加,这表明EF-G在体内被硫氧还蛋白还原。这些观察结果表明,翻译机制受EF-G氧化还原状态的调节,EF-G被活性氧氧化,并被硫氧还蛋白还原,硫氧还蛋白是光合电子传递产生的还原信号的传递者。

相似文献

1
Regulation of translation by the redox state of elongation factor G in the cyanobacterium Synechocystis sp. PCC 6803.
J Biol Chem. 2009 Jul 10;284(28):18685-91. doi: 10.1074/jbc.M109.015131. Epub 2009 May 15.
3
Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II.
Mol Microbiol. 2007 Aug;65(4):936-47. doi: 10.1111/j.1365-2958.2007.05836.x. Epub 2007 Jul 6.
4
Elongation factor G is a critical target during oxidative damage to the translation system of Escherichia coli.
J Biol Chem. 2012 Aug 17;287(34):28697-704. doi: 10.1074/jbc.M112.378067. Epub 2012 Jul 6.
6
Oxidation of Translation Factor EF-Tu Inhibits the Repair of Photosystem II.
Plant Physiol. 2018 Apr;176(4):2691-2699. doi: 10.1104/pp.18.00037. Epub 2018 Feb 8.
9
Oxidation of translation factor EF-G transiently retards the translational elongation cycle in Escherichia coli.
J Biochem. 2015 Aug;158(2):165-72. doi: 10.1093/jb/mvv026. Epub 2015 Mar 4.

引用本文的文献

1
Thioredoxin A regulates protein synthesis to maintain carbon and nitrogen partitioning in cyanobacteria.
Plant Physiol. 2024 Jul 31;195(4):2921-2936. doi: 10.1093/plphys/kiae101.
2
The impact of light and thioredoxins on the plant thiol-disulfide proteome.
Plant Physiol. 2024 May 31;195(2):1536-1560. doi: 10.1093/plphys/kiad669.
4
Oxidative stress strongly restricts the effect of codon choice on the efficiency of protein synthesis in .
Front Microbiol. 2022 Nov 29;13:1042675. doi: 10.3389/fmicb.2022.1042675. eCollection 2022.
5
Exploring the Diversity of the Thioredoxin Systems in Cyanobacteria.
Antioxidants (Basel). 2022 Mar 28;11(4):654. doi: 10.3390/antiox11040654.
6
Chloroplast ROS and stress signaling.
Plant Commun. 2021 Nov 9;3(1):100264. doi: 10.1016/j.xplc.2021.100264. eCollection 2022 Jan 10.
7
Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology.
Front Mol Biosci. 2021 May 10;8:671037. doi: 10.3389/fmolb.2021.671037. eCollection 2021.
8
Glycinebetaine mitigated the photoinhibition of photosystem II at high temperature in transgenic tomato plants.
Photosynth Res. 2021 Mar;147(3):301-315. doi: 10.1007/s11120-020-00810-2. Epub 2021 Jan 4.
9
Modulation of Translation by the Specific Inactivation of tRNA Under Oxidative Stress.
Front Genet. 2020 Aug 18;11:856. doi: 10.3389/fgene.2020.00856. eCollection 2020.
10
Responses of Membranes and the Photosynthetic Apparatus to Salt Stress in Cyanobacteria.
Front Plant Sci. 2020 Jun 5;11:713. doi: 10.3389/fpls.2020.00713. eCollection 2020.

本文引用的文献

1
Thioredoxins: structure and function in plant cells.
New Phytol. 1997 Aug;136(4):543-570. doi: 10.1046/j.1469-8137.1997.00784.x.
2
The ferredoxin/thioredoxin system of oxygenic photosynthesis.
Antioxid Redox Signal. 2008 Jul;10(7):1235-74. doi: 10.1089/ars.2007.1931.
3
How do environmental stresses accelerate photoinhibition?
Trends Plant Sci. 2008 Apr;13(4):178-82. doi: 10.1016/j.tplants.2008.01.005. Epub 2008 Mar 6.
5
Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II.
Mol Microbiol. 2007 Aug;65(4):936-47. doi: 10.1111/j.1365-2958.2007.05836.x. Epub 2007 Jul 6.
7
Photoinhibition of photosystem II under environmental stress.
Biochim Biophys Acta. 2007 Jun;1767(6):414-21. doi: 10.1016/j.bbabio.2006.11.019. Epub 2006 Dec 6.
9
A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II.
Biochim Biophys Acta. 2006 Jul;1757(7):742-9. doi: 10.1016/j.bbabio.2006.05.013. Epub 2006 May 23.
10
Towards a functional dissection of thioredoxin networks in plant cells.
Photochem Photobiol. 2007 Jan-Feb;83(1):145-51. doi: 10.1562/2006-02-27-IR-816.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验