Rodriguez-Granillo Agustina, Crespo Alejandro, Wittung-Stafshede Pernilla
Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, USA.
Biochemistry. 2009 Jun 30;48(25):5849-63. doi: 10.1021/bi900235g.
ATP7A/B are human P(1B)-type ATPases involved in cellular Cu homeostasis. The N-terminal parts of these multidomain proteins contain six metal-binding domains (MBDs) connected by linkers. The MBDs are similar in structure to each other and to the human copper chaperone Atox1, although their distinct roles in Cu transfer appear to vary. All domains have the ferredoxin-like fold and a solvent-exposed loop with a MXCXXC motif that can bind Cu(I). Here, we investigated the dynamic behavior of the individual MBDs (WD1-WD6) in ATP7B in apo forms using molecular dynamic simulations. We also performed simulations of three Cu-bound forms (WD2c, WD4c, and WD6c). Our results reveal molecular features that vary distinctly among the MBDs. Whereas WD1, WD2, and WD6 have well-defined Cu loop conformations stabilized by a network of interactions, WD4 and WD5 exhibit greater loop flexibility and, in WD4, helix alpha1 unwinds and rewinds. WD3, which has the lowest sequence identity, behaves differently and its Cu loop is rigid with respect to the rest of the domain. Cu coordination reduces structural dynamics in all domains but WD4c. In agreement with predictions on individual domains, simulations of the six possible Atox1-WD heterocomplexes show that Atox1 interactions with WD4 are the strongest. This study provides molecular explanations for reported Cu transfer and protein-protein interaction specificity.
ATP7A/B是参与细胞铜稳态的人类P(1B)型ATP酶。这些多结构域蛋白的N端部分包含六个由连接子连接的金属结合结构域(MBD)。尽管它们在铜转移中的不同作用似乎有所不同,但MBD在结构上彼此相似,且与人铜伴侣蛋白Atox1相似。所有结构域都具有铁氧化还原蛋白样折叠和一个带有可结合Cu(I)的MXCXXC基序的溶剂暴露环。在这里,我们使用分子动力学模拟研究了ATP7B中无apo形式的单个MBD(WD1-WD6)的动态行为。我们还对三种铜结合形式(WD2c、WD4c和WD6c)进行了模拟。我们的结果揭示了MBD之间明显不同的分子特征。WD1、WD2和WD6具有通过相互作用网络稳定的明确的铜环构象,而WD4和WD5表现出更大的环灵活性,并且在WD4中,α1螺旋会展开和重新缠绕。序列同一性最低的WD3表现不同,其铜环相对于结构域的其余部分是刚性的。铜配位降低了除WD4c之外所有结构域的结构动力学。与对单个结构域的预测一致,对六种可能的Atox1-WD异源复合物的模拟表明,Atox1与WD4的相互作用最强。这项研究为报道的铜转移和蛋白质-蛋白质相互作用特异性提供了分子解释。