Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251, USA.
J Phys Chem B. 2010 Mar 18;114(10):3698-706. doi: 10.1021/jp911208z.
The molecular details of how copper (Cu) is transferred from the human Cu chaperone Atox1 to metal-binding domains (MBDs) of P(1B)-type ATPases are still unclear. Here, we use a computational approach, employing quantum mechanics/molecular mechanics (QM/MM) methods, to shed light on the reaction mechanism [probable intermediates, Cu(I) coordination geometries, activation barriers, and energetics] of Cu(I) transfer from Atox1 to the fourth MBD of Wilson disease protein (WD4). Both Atox1 and WD4 have solvent-exposed metal-binding motifs with two Cys residues that coordinate Cu(I). After assessing the existence of all possible 2-, 3- and 4-coordinate Cu-intermediate species, one dominant reaction path emerged. First, without activation barrier, WD4's Cys1 binds Cu(I) in Atox1 to form a 3-coordinated intermediate. Next, with an activation barrier of about 9.5 kcal/mol, a second 3-coordinated intermediate forms that involves both of the Cys residues in WD4 and Cys1 of Atox1. This species can then form the product by decoordination of Atox1's Cys1 (barrier of about 8 kcal/mol). Overall, the Cu-transfer reaction from Atox1 to WD4 appears to be kinetically accessible but less energetically favorable (DeltaE = 7.7 kcal/mol). Our results provide unique insights into the molecular mechanism of protein-mediated Cu(I) transfer in the secretory pathway and are in agreement with existing experimental data.
铜(Cu)从人类 Cu 伴侣蛋白 Atox1 转移到 P(1B)-型 ATP 酶的金属结合域(MBD)的分子细节尚不清楚。在这里,我们使用计算方法,采用量子力学/分子力学(QM/MM)方法,阐明了 Cu(I)从 Atox1 转移到威尔逊病蛋白(WD4)的第四个 MBD 的反应机制[可能的中间体、Cu(I)配位几何、活化势垒和能量学]。Atox1 和 WD4 都具有暴露在溶剂中的金属结合基序,其中两个 Cys 残基与 Cu(I)配位。在评估了所有可能的 2-、3-和 4 配位 Cu 中间体物种的存在后,出现了一条主要的反应途径。首先,在没有活化势垒的情况下,WD4 的 Cys1 在 Atox1 中结合 Cu(I)形成 3 配位的中间体。接下来,在约 9.5 kcal/mol 的活化势垒下,形成第二个 3 配位的中间体,其中涉及 WD4 的两个 Cys 残基和 Atox1 的 Cys1。然后,通过 Atox1 的 Cys1 去配位(约 8 kcal/mol 的势垒),该物种可以形成产物。总体而言,从 Atox1 到 WD4 的 Cu 转移反应似乎在动力学上是可及的,但在能量上不太有利(ΔE = 7.7 kcal/mol)。我们的结果提供了对分泌途径中蛋白介导的 Cu(I)转移的分子机制的独特见解,与现有实验数据一致。