Dudev Todor, Lim Carmay
Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
J Am Chem Soc. 2009 Jun 17;131(23):8092-101. doi: 10.1021/ja900168k.
Ion channels, specialized pore-forming proteins, are an indispensable component of the nervous system and play a crucial role in regulating cardiac, skeletal, and smooth muscle contraction. Potassium ion channels, controlling the action potential of a number of excitable cells, are characterized by a remarkable ability to select K(+) over Na(+). Although the molecular basis for this striking ion selectivity has been a subject of extensive investigations using both experimental and theoretical methods, the following outstanding questions remain: (a) To what extent is the number of water molecules bound to the permeating ion (i.e., the hydration number) important for the K(+)/Na(+) competition? (b) Are the chemical type and number of coordinating groups lining the pore critical for the selectivity process? (c) Apart from providing cation-ligating groups, do the channel walls play any other role in the selectivity process? This work reveals that the pore's selectivity for K(+) over Na(+) increases with (i) increasing hydration number of K(+) relative to that of Na(+), (ii) increasing number of K(+)-coordinating dipoles, (iii) increasing number of Na(+)-coordinating dipoles, and (iv) decreasing magnitude of the coordinating dipoles provided by the pore. Thus, a high K(+)/Na(+) selectivity in K(+) channels could be achieved from a combination of several favorable factors involving the native ion, the metal-coordinating ligands, and the protein matrix, viz., (a) an octahydrated permeating K(+), (b) a pore lined with 8 carbonyl ligands, and (c) finely tuned physicomechanical properties of the channel walls providing a low dielectric medium favoring a high hydration number for the permeating K(+) and enough stiffness to force the competing Na(+) to adopt an unfavorable 8-fold coordination. This implies that optimal K(+)/Na(+) selectivity in K(+) channels generally does not arise from solely structural or energetic consideration. The factors affecting ion selectivity revealed herein help to rationalize why valinomycin and the KcsA ion channels are highly K(+)-selective, whereas the NaK channel is nonselective. The calculations predict that other pores containing a different number/chemical type of coordinating groups from those observed in potassium channels could also select K(+) over Na(+).
离子通道是一类特殊的成孔蛋白,是神经系统不可或缺的组成部分,在调节心脏、骨骼和平滑肌收缩中发挥着关键作用。钾离子通道控制着许多可兴奋细胞的动作电位,其显著特点是对K⁺的选择性远高于Na⁺。尽管利用实验和理论方法对这种显著的离子选择性的分子基础进行了广泛研究,但仍存在以下突出问题:(a) 与渗透离子结合的水分子数量(即水合数)对K⁺/Na⁺竞争的重要程度如何?(b) 孔道内衬的配位基团的化学类型和数量对选择性过程是否至关重要?(c) 除了提供阳离子配位基团外,通道壁在选择性过程中是否还发挥其他作用?这项研究表明,孔道对K⁺相对于Na⁺的选择性随着以下因素的增加而增加:(i) K⁺相对于Na⁺水合数的增加;(ii) K⁺配位偶极子数量的增加;(iii) Na⁺配位偶极子数量的增加;(iv) 孔道提供的配位偶极子大小的减小。因此,钾离子通道中高的K⁺/Na⁺选择性可以通过涉及天然离子、金属配位配体和蛋白质基质的几个有利因素的组合来实现,即:(a) 一个八水合的渗透K⁺;(b) 一个内衬8个羰基配体的孔道;(c) 通道壁经过精细调节的物理机械性质,提供一个低介电介质,有利于渗透K⁺具有高水合数,并具有足够的刚度迫使竞争性的Na⁺采用不利的八重配位。这意味着钾离子通道中最佳的K⁺/Na⁺选择性通常并非仅源于结构或能量方面的考虑。本文揭示的影响离子选择性的因素有助于解释为什么缬氨霉素和KcsA离子通道具有高度的K⁺选择性,而NaK通道则是非选择性的。计算预测,其他含有与钾通道中观察到的不同数量/化学类型配位基团的孔道也可能对K⁺的选择性高于Na⁺。