Suppr超能文献

Lévy过程与随机冯·贝塔朗菲生长模型及其在鱼类种群分析中的应用

Lévy processes and stochastic von Bertalanffy models of growth, with application to fish population analysis.

作者信息

Russo Tommaso, Baldi Paolo, Parisi Antonio, Magnifico Giuseppe, Mariani Stefano, Cataudella Stefano

机构信息

Laboratorio di Ecologia Sperimentale e Acquacoltura, Dipartimento di Biologia, Università di Roma Tor Vergata, Italy.

出版信息

J Theor Biol. 2009 Jun 21;258(4):521-9. doi: 10.1016/j.jtbi.2009.01.033.

Abstract

The study of animal growth is a longstanding crucial topic of theoretical biology. In this paper we introduce a new class of stochastic growth models that enjoy two crucial properties: the growth path of an individual is monotonically increasing and the mean length at time t follows the classic von Bertalanffy model. Besides the theoretical development, the models are also tested against a large set of length-at-age data collected on Atlantic herring (Clupea harengus): the mean lengths and variances of the cohorts were directly estimated by least squares. The results show that the use of subordinators can lead to models enjoying interesting properties, in particular able to catch some specific features often observed in fish growth data. The use of subordinators seems to allow for an increased fidelity in the description of fish growth, whilst still conforming to the general parameters of the traditional von Bertalanffy equation.

摘要

动物生长的研究是理论生物学中一个长期以来至关重要的课题。在本文中,我们引入了一类新的随机生长模型,这类模型具有两个关键特性:个体的生长路径单调递增,且在时刻(t)的平均长度遵循经典的冯·贝塔朗菲模型。除了理论发展,这些模型还针对大量收集到的大西洋鲱(Clupea harengus)的年龄-体长数据进行了检验:通过最小二乘法直接估计了各年龄组的平均长度和方差。结果表明,使用从属过程可以得到具有有趣特性的模型,特别是能够捕捉鱼类生长数据中经常观察到的一些特定特征。使用从属过程似乎在描述鱼类生长时能够提高逼真度,同时仍符合传统冯·贝塔朗菲方程的一般参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验