Zook Justin M, Lindner Erno
Department of Biomedical Engineering, The University of Memphis, 330 Engineering Technology Building, Memphis, Tennessee 38152, USA.
Anal Chem. 2009 Jul 1;81(13):5146-54. doi: 10.1021/ac801984d.
The applications of ion-selective electrodes (ISEs) have been broadened through the introduction of galvanostatic current pulse methods in potentiometric analysis. An important requirement in these applications is the restoration of the uniform equilibrium concentration profiles in the ISE membrane between each measurement. The simplest restoration method is zero-current relaxation, in which the membrane relaxes under open-circuit conditions in a diffusion-controlled process. This paper presents a novel restoration method using a reverse current pulse. An analytic model for this restoration method is derived to predict the concentration profiles inside ISE membranes following galvanostatic current pulses. This model allows the calculation of the voltage transients as the membrane voltage relaxes back toward its zero-current equilibrium value. The predicted concentration profiles and voltage transients are confirmed using spectroelectrochemical microscopy (SpECM). The reverse current restoration method described in this paper reduces the voltage drift and voltage error by 10-100 times compared to the zero-current restoration method. Therefore, this new method provides faster and more reproducible voltage measurements in most chronopotentiometric ISE applications, such as improving the detection limit and determining concentrations and diffusion coefficients of membrane species. One limitation of the reverse current restoration method is that it cannot be used in a few applications that require background electrolyte loaded membranes without excess of lipophilic cation exchanger.
通过在电位分析中引入恒电流脉冲方法,离子选择性电极(ISE)的应用得到了拓展。这些应用中的一个重要要求是在每次测量之间恢复ISE膜中均匀的平衡浓度分布。最简单的恢复方法是零电流弛豫,即在开路条件下,膜在扩散控制过程中弛豫。本文提出了一种使用反向电流脉冲的新型恢复方法。推导了这种恢复方法的解析模型,以预测恒电流脉冲后ISE膜内的浓度分布。该模型可以计算膜电压向其零电流平衡值弛豫时的电压瞬变。使用光谱电化学显微镜(SpECM)对预测的浓度分布和电压瞬变进行了验证。与零电流恢复方法相比,本文所述的反向电流恢复方法可将电压漂移和电压误差降低10至100倍。因此,在大多数计时电位ISE应用中,这种新方法能够提供更快且更具可重复性的电压测量,例如提高检测限以及测定膜物质的浓度和扩散系数。反向电流恢复方法的一个局限性在于,它不能用于一些需要负载背景电解质且无过量亲脂性阳离子交换剂的膜的应用中。