Boehm Alex, Steiner Samuel, Zaehringer Franziska, Casanova Alain, Hamburger Fabienne, Ritz Daniel, Keck Wolfgang, Ackermann Martin, Schirmer Tilman, Jenal Urs
Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
Mol Microbiol. 2009 Jun;72(6):1500-16. doi: 10.1111/j.1365-2958.2009.06739.x. Epub 2009 May 15.
Biofilms are communities of surface-attached, matrix-embedded microbial cells that can resist antimicrobial chemotherapy and contribute to persistent infections. Using an Escherichia coli biofilm model we found that exposure of bacteria to subinhibitory concentrations of ribosome-targeting antibiotics leads to strong biofilm induction. We present evidence that this effect is elicited by the ribosome in response to translational stress. Biofilm induction involves upregulation of the polysaccharide adhesin poly-beta-1,6-N-acetyl-glucosamine (poly-GlcNAc) and two components of the poly-GlcNAc biosynthesis machinery, PgaA and PgaD. Poly-GlcNAc control depends on the bacterial signalling molecules guanosine-bis 3', 5'(diphosphate) (ppGpp) and bis-(3'-5')-cyclic di-GMP (c-di-GMP). Treatment with translation inhibitors causes a ppGpp hydrolase (SpoT)-mediated reduction of ppGpp levels, resulting in specific derepression of PgaA. Maximal induction of PgaD and poly-GlcNAc synthesis requires the production of c-di-GMP by the dedicated diguanylate cyclase YdeH. Our results identify a novel regulatory mechanism that relies on ppGpp signalling to relay information about ribosomal performance to the Pga machinery, thereby inducing adhesin production and biofilm formation. Based on the important synergistic roles of ppGpp and c-di-GMP in this process, we suggest that interference with bacterial second messenger signalling might represent an effective means for biofilm control during chronic infections.
生物膜是附着于表面、嵌入基质的微生物细胞群落,能够抵抗抗菌化疗并导致持续性感染。利用大肠杆菌生物膜模型,我们发现将细菌暴露于亚抑制浓度的靶向核糖体抗生素会导致强烈的生物膜诱导。我们提供的证据表明,这种效应是由核糖体响应翻译应激而引发的。生物膜诱导涉及多糖黏附素聚-β-1,6-N-乙酰葡糖胺(聚-GlcNAc)以及聚-GlcNAc生物合成机制的两个组分PgaA和PgaD的上调。聚-GlcNAc的调控依赖于细菌信号分子鸟苷-双-3',5'-(二磷酸)(ppGpp)和双-(3'-5')-环二鸟苷酸(c-di-GMP)。用翻译抑制剂处理会导致ppGpp水解酶(SpoT)介导的ppGpp水平降低,从而导致PgaA的特异性去阻遏。PgaD和聚-GlcNAc合成的最大诱导需要由专用的双鸟苷酸环化酶YdeH产生c-di-GMP。我们的结果确定了一种新的调控机制,该机制依赖于ppGpp信号传导,将有关核糖体性能的信息传递给Pga机制,从而诱导黏附素产生和生物膜形成。基于ppGpp和c-di-GMP在此过程中的重要协同作用,我们建议干扰细菌第二信使信号传导可能是慢性感染期间控制生物膜的有效手段。