Misra Ashish, Surolia Namita, Surolia Avadhesha
Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
Mol Biosyst. 2009 Jun;5(6):651-9. doi: 10.1039/b820420a. Epub 2009 Apr 27.
One of the unexplored, yet important aspects of the biology of acyl carrier proteins (ACPs) is the self-acylation and malonyl transferase activities dedicated to ACPs in polyketide synthesis. Our studies demonstrate the existence of malonyl transferase activity in ACPs involved in type II fatty acid biosynthesis from Plasmodium falciparum and Escherichia coli. We also show that the catalytic malonyl transferase activity is intrinsic to an individual ACP. Mutational analysis implicates an arginine/lysine in loop II and an arginine/glutamine in helix III as the catalytic residues for transferase function. The hydrogen bonding properties of these residues appears to be indispensable for the transferase reaction. Complementation of fabD(Ts) E. coli highlights the putative physiological role of this process. Our studies thus shed light on a key aspect of ACP biology and provide insights into the mechanism involved therein.
酰基载体蛋白(ACP)生物学中尚未探索但重要的一个方面是在聚酮化合物合成中专门针对ACP的自酰化和丙二酰转移酶活性。我们的研究证明,参与恶性疟原虫和大肠杆菌II型脂肪酸生物合成的ACP中存在丙二酰转移酶活性。我们还表明,催化丙二酰转移酶活性是单个ACP所固有的。突变分析表明,环II中的精氨酸/赖氨酸和螺旋III中的精氨酸/谷氨酰胺是转移酶功能的催化残基。这些残基的氢键特性似乎是转移酶反应所必需的。fabD(Ts)大肠杆菌的互补作用突出了这一过程的假定生理作用。因此,我们的研究揭示了ACP生物学的一个关键方面,并为其中涉及的机制提供了见解。