Suppr超能文献

使用复合泊松随机效应模拟具有额外零值的聚类计数数据中的异质性。

Modelling heterogeneity in clustered count data with extra zeros using compound Poisson random effect.

作者信息

Ma Renjun, Hasan M Tariqul, Sneddon Gary

机构信息

Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, Canada E3B 5A3.

出版信息

Stat Med. 2009 Aug 15;28(18):2356-69. doi: 10.1002/sim.3619.

Abstract

In medical and health studies, heterogeneities in clustered count data have been traditionally modeled by positive random effects in Poisson mixed models; however, excessive zeros often occur in clustered medical and health count data. In this paper, we consider a three-level random effects zero-inflated Poisson model for health-care utilization data where data are clustered by both subjects and families. To accommodate zero and positive components in the count response compatibly, we model the subject level random effects by a compound Poisson distribution. Our model displays a variance components decomposition which clearly reflects the hierarchical structure of clustered data. A quasi-likelihood approach has been developed in the estimation of our model. We illustrate the method with analysis of the health-care utilization data. The performance of our method is also evaluated through simulation studies.

摘要

在医学与健康研究中,聚类计数数据中的异质性传统上通过泊松混合模型中的正随机效应进行建模;然而,聚类的医学与健康计数数据中经常出现过多的零值。在本文中,我们针对医疗保健利用数据考虑一种三级随机效应零膨胀泊松模型,其中数据按个体和家庭进行聚类。为了兼容地处理计数响应中的零值和正值成分,我们通过复合泊松分布对个体水平的随机效应进行建模。我们的模型展示了一种方差成分分解,清晰地反映了聚类数据的层次结构。在我们模型的估计中开发了一种拟似然方法。我们通过对医疗保健利用数据的分析来说明该方法。我们还通过模拟研究评估了我们方法的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验