Ampatzis Christos, Tuci Elio, Trianni Vito, Christensen Anders Lyhne, Dorigo Marco
European Space Agency, Advanced Concepts Team, ESTEC, Keplerlaan I, Postbus 2fff99, 2200 AG, Noordwijk, The Netherlands.
Artif Life. 2009 Fall;15(4):465-84. doi: 10.1162/artl.2009.Ampatzis.013.
This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.
这项研究工作阐述了一种用于自组装机器人的控制器设计方法,其中自组装由物理机器人通过其动态交互产生的感知线索启动和调节。更具体地说,我们提出了一种同质控制系统,该系统可以在移动自重构系统的两个模块(两个完全自主的机器人)之间实现组装,而无需事先引入行为或形态上的异质性。控制器是在模拟中进化的动态神经网络,直接控制两个机器人的所有执行器。神经控制器通过仅基于它们之间的交互来分配角色,从而使机器人实现动态专业化。我们表明,经过进化得到的最佳控制器在真实硬件平台“群体机器人”上进行测试时被证明是成功的。所实现的性能与现有基于模块或行为的方法所实现的性能相似,这也是由于一种涌现恢复机制的作用,该机制既没有在适应度函数中得到明确奖励,也没有在进化模拟过程中被观察到。我们的结果表明,直接获取其他智能体的方向或意图不是机器人协调的必要条件:与大多数集体机器人研究工作所假设的相反,我们的机器人无需直接或明确的通信就能进行协调。这项工作也有助于进一步证明进化机器人学是一种能够解决需要精细感觉运动协调的现实世界任务的设计方法。