Quinn Matt, Smith Lincoln, Mayley Giles, Husbands Phil
Centre for Computational Neuroscience and Robotics, Brighton Innovation Centre, University of Sussex, Brighton BN1 9QG, UK.
Philos Trans A Math Phys Eng Sci. 2003 Oct 15;361(1811):2321-43. doi: 10.1098/rsta.2003.1258.
We report on recent work in which we employed artificial evolution to design neural network controllers for small, homogeneous teams of mobile autonomous robots. The robots were evolved to perform a formation-movement task from random starting positions, equipped only with infrared sensors. The dual constraints of homogeneity and minimal sensors make this a non-trivial task. We describe the behaviour of a successful system in which robots adopt and maintain functionally distinct roles in order to achieve the task. We believe this to be the first example of the use of artificial evolution to design coordinated, cooperative behaviour for real robots.
我们报告了近期的工作,在这项工作中我们采用人工进化为小型、同类移动自主机器人团队设计神经网络控制器。这些机器人从随机起始位置进化以执行编队移动任务,仅配备红外传感器。同质性和最少传感器这两个双重约束使得这成为一项具有挑战性的任务。我们描述了一个成功系统的行为,在该系统中机器人采用并维持功能上不同的角色以完成任务。我们认为这是使用人工进化为真实机器人设计协调、合作行为的首个实例。