Pospísil Pavel
Laboratory of Biophysics, Department of Experimental Physics, Faculty of Science, Palacký University, Olomouc, Czech Republic.
Biochim Biophys Acta. 2009 Oct;1787(10):1151-60. doi: 10.1016/j.bbabio.2009.05.005. Epub 2009 May 20.
Photosysthetic cleavage of water molecules to molecular oxygen is a crucial process for all aerobic life on the Earth. Light-driven oxidation of water occurs in photosystem II (PSII) - a pigment-protein complex embedded in the thylakoid membrane of plants, algae and cyanobacteria. Electron transport across the thylakoid membrane terminated by NADPH and ATP formation is inadvertently coupled with the formation of reactive oxygen species (ROS). Reactive oxygen species are mainly produced by photosystem I; however, under certain circumstances, PSII contributes to the overall formation of ROS in the thylakoid membrane. Under limitation of electron transport reaction between both photosystems, photoreduction of molecular oxygen by the reducing side of PSII generates a superoxide anion radical, its dismutation to hydrogen peroxide and the subsequent formation of a hydroxyl radical terminates the overall process of ROS formation on the PSII electron acceptor side. On the PSII electron donor side, partial or complete inhibition of enzymatic activity of the water-splitting manganese complex is coupled with incomplete oxidation of water to hydrogen peroxide. The review points out the mechanistic aspects in the production of ROS on both the electron acceptor and electron donor side of PSII.
水分子光解为分子氧对地球上所有需氧生物来说都是一个关键过程。水的光驱动氧化发生在光系统II(PSII)中,PSII是一种嵌入植物、藻类和蓝细菌类囊体膜中的色素蛋白复合体。跨类囊体膜的电子传递以NADPH和ATP的形成为终止,这一过程无意中与活性氧(ROS)的形成相偶联。活性氧主要由光系统I产生;然而,在某些情况下,PSII也会促进类囊体膜中ROS的整体形成。在两个光系统之间的电子传递反应受限的情况下,PSII还原侧对分子氧的光还原会产生超氧阴离子自由基,其歧化生成过氧化氢,随后形成羟基自由基,这终止了PSII电子受体侧ROS形成的整个过程。在PSII电子供体侧,水裂解锰复合体的酶活性部分或完全受到抑制会导致水不完全氧化为过氧化氢。这篇综述指出了PSII电子受体侧和电子供体侧ROS产生的机制方面。