Suppr超能文献

持续性缺氧促进肺动脉特异性慢性炎症微环境的形成。

Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment.

作者信息

Burke Danielle L, Frid Maria G, Kunrath Claudia L, Karoor Vijaya, Anwar Adil, Wagner Brandie D, Strassheim Derek, Stenmark Kurt R

机构信息

Department of Pediatrics and Medicine, University of Colorado Denver, USA.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2009 Aug;297(2):L238-50. doi: 10.1152/ajplung.90591.2008. Epub 2009 May 22.

Abstract

Recent studies demonstrate that sustained hypoxia induces the robust accumulation of leukocytes and mesenchymal progenitor cells in pulmonary arteries (PAs). Since the factors orchestrating hypoxia-induced vascular inflammation are not well-defined, the goal of this study was to identify mediators potentially responsible for recruitment to and retention and differentiation of circulating cells within the hypoxic PA. We analyzed mRNA expression of 44 different chemokine/chemokine receptor, cytokine, adhesion, and growth and differentiation genes in PAs obtained via laser capture microdissection in adjacent lung parenchyma and in systemic arteries by RT-PCR at several time points of hypoxic exposure (1, 7, and 28 days) in Wistar-Kyoto rats. Analysis of inflammatory cell accumulation and protein expression of selected genes was concomitantly assessed by immunochemistry. We found that hypoxia induced progressive accumulation of monocytes and dendritic cells in the vessel wall with few T cells and no B cells or neutrophils. Upregulation of stromal cell-derived factor-1 (SDF-1), VEGF, growth-related oncogene protein-alpha (GRO-alpha), C5, ICAM-1, osteopontin (OPN), and transforming growth factor-beta (TGF-beta) preceded mononuclear cell influx. With time, a more complex pattern of gene expression developed with persistent upregulation of adhesion molecules (ICAM-1, VCAM-1, and OPN) and monocyte/fibrocyte growth and differentiation factors (TGF-beta, endothelin-1, and 5-lipoxygenase). On return to normoxia, expression of many genes (including SDF-1, monocyte chemoattractant protein-1, C5, ICAM-1, and TGF-beta) rapidly returned to control levels, changes that preceded the disappearance of monocytes and reversal of vascular remodeling. In conclusion, sustained hypoxia leads to the development of a complex, PA-specific, proinflammatory microenvironment capable of promoting recruitment, retention, and differentiation of circulating monocytic cell populations that contribute to vascular remodeling.

摘要

近期研究表明,持续性低氧会促使白细胞和间充质祖细胞在肺动脉(PA)中大量积聚。由于调控低氧诱导的血管炎症的因素尚未明确,本研究的目的是确定可能负责循环细胞募集、滞留以及在低氧PA中分化的介质。我们通过逆转录聚合酶链反应(RT-PCR),在Wistar-Kyoto大鼠低氧暴露的几个时间点(1天、7天和28天),分析了通过激光捕获显微切割从相邻肺实质和体动脉获取的PA中44种不同趋化因子/趋化因子受体、细胞因子、黏附分子以及生长和分化基因的mRNA表达。同时通过免疫化学评估炎症细胞积聚情况以及所选基因的蛋白表达。我们发现,低氧导致单核细胞和树突状细胞在血管壁中逐渐积聚,T细胞较少,无B细胞或中性粒细胞。基质细胞衍生因子-1(SDF-1)、血管内皮生长因子(VEGF)、生长相关癌基因蛋白-α(GRO-α)、补体C5、细胞间黏附分子-1(ICAM-1)、骨桥蛋白(OPN)和转化生长因子-β(TGF-β)的上调先于单核细胞流入。随着时间推移,基因表达出现更复杂的模式,黏附分子(ICAM-1、血管细胞黏附分子-1和OPN)以及单核细胞/纤维细胞生长和分化因子(TGF-β、内皮素-1和5-脂氧合酶)持续上调。恢复正常氧合后,许多基因(包括SDF-1、单核细胞趋化蛋白-1、C5、ICAM-1和TGF-β)的表达迅速恢复到对照水平,这些变化先于单核细胞消失和血管重塑逆转。总之,持续性低氧导致形成一种复杂的、PA特异性的促炎微环境,能够促进循环单核细胞群体的募集、滞留和分化,进而导致血管重塑。

相似文献

1
Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment.
Am J Physiol Lung Cell Mol Physiol. 2009 Aug;297(2):L238-50. doi: 10.1152/ajplung.90591.2008. Epub 2009 May 22.
2
Hypoxia, leukocytes, and the pulmonary circulation.
J Appl Physiol (1985). 2005 Feb;98(2):715-21. doi: 10.1152/japplphysiol.00840.2004.
3
Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension.
J Immunol. 2011 Sep 1;187(5):2711-22. doi: 10.4049/jimmunol.1100479. Epub 2011 Aug 3.
4
Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration.
Immunobiology. 2008;213(9-10):733-49. doi: 10.1016/j.imbio.2008.07.031. Epub 2008 Sep 21.
6
Nonclassical Monocytes Sense Hypoxia, Regulate Pulmonary Vascular Remodeling, and Promote Pulmonary Hypertension.
J Immunol. 2020 Mar 15;204(6):1474-1485. doi: 10.4049/jimmunol.1900239. Epub 2020 Jan 29.
8
Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension.
Circulation. 2011 May 10;123(18):1986-95. doi: 10.1161/CIRCULATIONAHA.110.978627. Epub 2011 Apr 25.
9
The hypoxic environment reprograms the cytokine/chemokine expression profile of human mature dendritic cells.
Immunobiology. 2013 Jan;218(1):76-89. doi: 10.1016/j.imbio.2012.02.002. Epub 2012 Feb 10.
10
Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8798-803. doi: 10.1073/pnas.161272598. Epub 2001 Jul 10.

引用本文的文献

1
Monocytes and interstitial macrophages contribute to hypoxic pulmonary hypertension.
J Clin Invest. 2025 Jan 30;135(6):e176865. doi: 10.1172/JCI176865.
2
A bovine model of hypoxia-induced pulmonary hypertension reveals a gradient of immune and matrisome response with a complement signature found in circulation.
Am J Physiol Cell Physiol. 2024 Dec 1;327(6):C1666-C1680. doi: 10.1152/ajpcell.00274.2024. Epub 2024 Nov 4.
3
Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets.
MedComm (2020). 2024 Oct 15;5(11):e786. doi: 10.1002/mco2.786. eCollection 2024 Nov.
4
Molecular signaling and clinical implications in the human aging-cancer cycle.
Semin Cancer Biol. 2024 Nov;106-107:28-42. doi: 10.1016/j.semcancer.2024.08.003. Epub 2024 Aug 26.
7
The role of immune cells and inflammation in pulmonary hypertension: mechanisms and implications.
Front Immunol. 2024 Mar 11;15:1374506. doi: 10.3389/fimmu.2024.1374506. eCollection 2024.
10
Osteopontin in Pulmonary Hypertension.
Biomedicines. 2023 May 7;11(5):1385. doi: 10.3390/biomedicines11051385.

本文引用的文献

1
Myeloid cells in atherosclerosis: initiators and decision shapers.
Semin Immunopathol. 2009 Jun;31(1):35-47. doi: 10.1007/s00281-009-0141-z. Epub 2009 Feb 24.
2
Osteopontin: role in immune regulation and stress responses.
Cytokine Growth Factor Rev. 2008 Oct-Dec;19(5-6):333-45. doi: 10.1016/j.cytogfr.2008.08.001. Epub 2008 Oct 25.
3
Role of inflammation in atherosclerosis associated with rheumatoid arthritis.
Am J Med. 2008 Oct;121(10 Suppl 1):S21-31. doi: 10.1016/j.amjmed.2008.06.014.
4
Chemokines in vascular dysfunction and remodeling.
Arterioscler Thromb Vasc Biol. 2008 Nov;28(11):1950-9. doi: 10.1161/ATVBAHA.107.161224. Epub 2008 Sep 25.
5
Fhl-1, a new key protein in pulmonary hypertension.
Circulation. 2008 Sep 9;118(11):1183-94. doi: 10.1161/CIRCULATIONAHA.107.761916. Epub 2008 Aug 25.
6
Molecular pathogenesis of pulmonary arterial hypertension.
J Clin Invest. 2008 Jul;118(7):2372-9. doi: 10.1172/JCI33452.
7
Role of osteopontin in cellular signaling and metastatic phenotype.
Front Biosci. 2008 May 1;13:4276-84. doi: 10.2741/3004.
8
Molecular targets of rheumatoid arthritis.
Inflamm Allergy Drug Targets. 2008 Mar;7(1):53-66. doi: 10.2174/187152808784165199.
9
The microenvironment for erythropoiesis is regulated by HIF-2alpha through VCAM-1 in endothelial cells.
Blood. 2008 Aug 15;112(4):1482-92. doi: 10.1182/blood-2007-11-122648. Epub 2008 May 1.
10
Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension.
Am J Respir Crit Care Med. 2008 Jul 1;178(1):81-8. doi: 10.1164/rccm.200707-1037OC. Epub 2008 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验