Suppr超能文献

嗜热厌氧菌“嗜热厌氧纤维素分解菌”DSM 6725在无需预处理的情况下对木质纤维素植物生物质进行高效降解。

Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe "Anaerocellum thermophilum" DSM 6725.

作者信息

Yang Sung-Jae, Kataeva Irina, Hamilton-Brehm Scott D, Engle Nancy L, Tschaplinski Timothy J, Doeppke Crissa, Davis Mark, Westpheling Janet, Adams Michael W W

机构信息

Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.

出版信息

Appl Environ Microbiol. 2009 Jul;75(14):4762-9. doi: 10.1128/AEM.00236-09. Epub 2009 May 22.

Abstract

Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that "Anaerocellum thermophilum" DSM 6725, an anaerobic bacterium that grows optimally at 75 degrees C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75 degrees C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70 degrees C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms.

摘要

极少有培养的微生物能够在不经过化学预处理的情况下降解木质纤维素生物质。我们在此表明,嗜热厌氧杆菌DSM 6725,一种在75摄氏度下生长最佳的厌氧细菌,能够有效利用各种未经处理的植物生物质,以及结晶纤维素和木聚糖。这些植物生物质包括杨树等阔叶树、象草和百慕大草等低木质素草类,以及柳枝稷等高木质素草类。该微生物并非仅利用未经处理生物质的可溶部分,因为在75摄氏度下洗涤18小时后获得的不溶性植物生物质(以及纤维素和木聚糖)也可作为生长底物。所有生长底物产生的主要终产物是氢气、乙酸和乳酸。在以特定底物生长期间,葡萄糖和纤维二糖(在结晶纤维素上)以及木糖和木二糖(在木聚糖上)也会在生长培养基中积累,但在以植物生物质生长期间则不会。嗜热厌氧杆菌DSM 6725在源自杨树和柳枝稷的一次和二次消耗生物质上生长良好,其中消耗生物质定义为该生物体进入生长后期稳定期后回收的不溶性生长底物。未发现嗜热厌氧杆菌DSM 6725直接附着在植物生物质上的证据。该生物体在利用木糖和果胶生长的能力方面与密切相关的菌株嗜热厌氧杆菌Z - 1320不同。嗜热解纤维梭菌DSM 8903(最适生长温度70摄氏度),嗜热厌氧杆菌DSM 6725的近亲,在柳枝稷上生长良好,但在杨树上生长不佳,这表明这两种原本非常相似的生物体在生物质降解能力上存在显著差异。

相似文献

2
Classification of 'Anaerocellum thermophilum' strain DSM 6725 as Caldicellulosiruptor bescii sp. nov.
Int J Syst Evol Microbiol. 2010 Sep;60(Pt 9):2011-2015. doi: 10.1099/ijs.0.017731-0. Epub 2009 Oct 2.
6
Consolidated bioprocessing of untreated switchgrass to hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus DSM 8903.
Bioresour Technol. 2013 Jul;139:272-9. doi: 10.1016/j.biortech.2013.04.005. Epub 2013 Apr 18.
7
Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium "Anaerocellum thermophilum" DSM 6725.
J Bacteriol. 2009 Jun;191(11):3760-1. doi: 10.1128/JB.00256-09. Epub 2009 Apr 3.
10

引用本文的文献

2
Extremophiles in a changing world.
Extremophiles. 2024 Apr 29;28(2):26. doi: 10.1007/s00792-024-01341-7.
3
Hydrogen Production from Barley Straw and Miscanthus by the Hyperthermophilic Bacterium, .
J Microbiol Biotechnol. 2023 Oct 28;33(10):1384-1389. doi: 10.4014/jmb.2305.05022. Epub 2023 Jun 19.
4
Direct conversion of cellulose to L-lactic acid by a novel thermophilic Caldicellulosiruptor strain.
Biotechnol Biofuels Bioprod. 2022 May 2;15(1):44. doi: 10.1186/s13068-022-02137-7.
5
Biochemical and Molecular Dynamics Study of a Novel GH 43 α-l-Arabinofuranosidase/β-Xylosidase From DSM8903.
Front Bioeng Biotechnol. 2022 Feb 11;10:810542. doi: 10.3389/fbioe.2022.810542. eCollection 2022.
6
Genome-Scale Metabolic Model of Reveals Optimal Metabolic Engineering Strategies for Bio-based Chemical Production.
mSystems. 2021 Jun 29;6(3):e0135120. doi: 10.1128/mSystems.01351-20. Epub 2021 Jun 1.
8
High Potential for Biomass-Degrading Enzymes Revealed by Hot Spring Metagenomics.
Front Microbiol. 2021 Apr 21;12:668238. doi: 10.3389/fmicb.2021.668238. eCollection 2021.
10
Innovations in CAZyme gene diversity and its modification for biorefinery applications.
Biotechnol Rep (Amst). 2020 Sep 1;28:e00525. doi: 10.1016/j.btre.2020.e00525. eCollection 2020 Dec.

本文引用的文献

1
Xylan structure, microbial xylanases, and their mode of action.
World J Microbiol Biotechnol. 1992 Jul;8(4):353-68. doi: 10.1007/BF01198746.
2
Genome sequence of the anaerobic, thermophilic, and cellulolytic bacterium "Anaerocellum thermophilum" DSM 6725.
J Bacteriol. 2009 Jun;191(11):3760-1. doi: 10.1128/JB.00256-09. Epub 2009 Apr 3.
4
Whole-cell biocatalysts for biodiesel fuel production.
Trends Biotechnol. 2008 Dec;26(12):668-73. doi: 10.1016/j.tibtech.2008.08.001. Epub 2008 Oct 29.
5
Relative crystallinity of plant biomass: studies on assembly, adaptation and acclimation.
PLoS One. 2008 Aug 6;3(8):e2897. doi: 10.1371/journal.pone.0002897.
6
Extremely thermophilic microorganisms for biomass conversion: status and prospects.
Curr Opin Biotechnol. 2008 Jun;19(3):210-7. doi: 10.1016/j.copbio.2008.04.007. Epub 2008 Jun 2.
7
Designing the deconstruction of plant cell walls.
Curr Opin Plant Biol. 2008 Jun;11(3):314-20. doi: 10.1016/j.pbi.2008.04.001. Epub 2008 May 15.
8
Three microbial strategies for plant cell wall degradation.
Ann N Y Acad Sci. 2008 Mar;1125:289-97. doi: 10.1196/annals.1419.026.
9
How biotech can transform biofuels.
Nat Biotechnol. 2008 Feb;26(2):169-72. doi: 10.1038/nbt0208-169.
10
Compositional analysis of water-soluble materials in corn stover.
J Agric Food Chem. 2007 Jul 25;55(15):5912-8. doi: 10.1021/jf0700327. Epub 2007 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验