Suppr超能文献

植物生物质的相对结晶度:关于组装、适应与驯化的研究

Relative crystallinity of plant biomass: studies on assembly, adaptation and acclimation.

作者信息

Harris Darby, DeBolt Seth

机构信息

Department of Horticulture, University of Kentucky, Lexington, Kentucky, United States of America.

出版信息

PLoS One. 2008 Aug 6;3(8):e2897. doi: 10.1371/journal.pone.0002897.

Abstract

Plant biomechanical design is central to cell shape, morphogenesis, reproductive performance and protection against environmental and mechanical stress. The cell wall forms the central load bearing support structure for plant design, yet a mechanistic understanding of its synthesis is incomplete. A key tool for studying the structure of cellulose polymorphs has been x-ray diffraction and fourier transform infrared spectroscopy (FTIR). Relative crystallinity index (RCI) is based on the x-ray diffraction characteristics of two signature peaks and we used this technique to probe plant assembly, adaptation and acclimation. Confocal microscopy was used to visualize the dynamics of cellulose synthase in transgenic Arabidopsis plants expressing a homozygous YFP::CESA6. Assembly: RCI values for stems and roots were indistinguishable but leaves had 23.4 and 21.6% lower RCI than stems and roots respectively. Adaptation: over 3-fold variability in RCI was apparent in leaves from 35 plant species spanning Ordovician to Cretaceous periods. Within this study, RCI correlated positively with leaf geometric constraints and with mass per unit area, suggestive of allometry. Acclimation: biomass crystallinity was found to decrease under conditions of thigmomorphogenesis in Arabidopsis. Further, in etiolated pea hypocotyls, RCI values also decreased compared to plants that were grown in light, consistent with alterations in FTIR cellulose fingerprint peaks and live cell imaging experiments revealing rapid orientation of the YFP::cellulose synthase-6 array in response to light. Herein, results and technical challenges associated with the structure of the cell wall that gives rise to sample crystallinity are presented and examined with respect to adaptation, acclimation and assembly in ecosystem-level processes.

摘要

植物生物力学设计对于细胞形状、形态发生、繁殖性能以及抵御环境和机械应力至关重要。细胞壁构成了植物设计的核心承重支撑结构,然而对其合成的机理理解并不完整。研究纤维素多晶型结构的一个关键工具是X射线衍射和傅里叶变换红外光谱(FTIR)。相对结晶度指数(RCI)基于两个特征峰的X射线衍射特性,我们利用该技术来探究植物的组装、适应和驯化。共聚焦显微镜用于观察在表达纯合YFP::CESA6的转基因拟南芥植物中纤维素合酶的动态。组装:茎和根的RCI值没有差异,但叶片的RCI分别比茎和根低23.4%和21.6%。适应:在跨越奥陶纪至白垩纪时期的35种植物的叶片中,RCI存在明显超过3倍的变异性。在本研究中,RCI与叶片几何约束以及单位面积质量呈正相关,提示存在异速生长关系。驯化:在拟南芥中,发现生物量结晶度在触变形态发生条件下会降低。此外,在黄化豌豆下胚轴中,与在光照下生长的植物相比,RCI值也降低了,这与FTIR纤维素指纹峰的变化以及活细胞成像实验一致,该实验揭示了YFP::纤维素合酶-6阵列对光的快速定向。在此,我们展示并探讨了与导致样品结晶度的细胞壁结构相关的结果和技术挑战,涉及生态系统水平过程中的适应、驯化和组装。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f5d/2483349/45e032bf54ce/pone.0002897.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验