Suppr超能文献

细胞间耦合的小世界网络模型预测视交叉上核中的同步增强。

Small-world network models of intercellular coupling predict enhanced synchronization in the suprachiasmatic nucleus.

作者信息

Vasalou Christina, Herzog Erik D, Henson Michael A

机构信息

Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.

出版信息

J Biol Rhythms. 2009 Jun;24(3):243-54. doi: 10.1177/0748730409333220.

Abstract

The suprachiasmatic nucleus (SCN) of the hypothalamus is a multioscillator system that drives daily rhythms in mammalian behavior and physiology. Based on recent data implicating vasoactive intestinal polypeptide (VIP) as the key intercellular synchronizing agent, we developed a multicellular SCN model to investigate the effects of cellular heterogeneity and intercellular connectivity on circadian behavior. A 2-dimensional grid was populated with 400 model cells that were heterogeneous with respect to their uncoupled rhythmic behavior (intrinsic and damped pacemakers with a range of oscillation periods) and VIP release characteristics (VIP producers and nonproducers). We constructed small-world network architectures in which local connections between VIP producing cells and their 4 nearest neighbors were augmented with random connections, resulting in long-range coupling across the grid. With only 10% of the total possible connections, the small-world network model was able to produce similar phase synchronization indices as a mean-field model with VIP producing cells connected to all other cells. Partial removal of random connections decreased the synchrony among neurons, the amplitude of VIP and cAMP response element binding protein oscillations, the mean period of intrinsic periods across the population, and the percentage of oscillating cells. These results indicate that small-world connectivity provides the optimal compromise between the number of connections and control of circadian amplitude and synchrony. This model predicts that small decreases in long-range VIP connections in the SCN could have dramatic effects on period and amplitude of daily rhythms, features commonly described with aging.

摘要

下丘脑的视交叉上核(SCN)是一个多振荡器系统,驱动着哺乳动物行为和生理的日常节律。基于最近的数据表明血管活性肠肽(VIP)是关键的细胞间同步因子,我们开发了一个多细胞SCN模型,以研究细胞异质性和细胞间连接性对昼夜节律行为的影响。一个二维网格中填充了400个模型细胞,这些细胞在未耦合的节律行为(具有一系列振荡周期的固有和阻尼起搏器)和VIP释放特性(VIP产生细胞和非产生细胞)方面存在异质性。我们构建了小世界网络架构,其中VIP产生细胞与其4个最近邻之间的局部连接通过随机连接得到增强,从而在整个网格中实现远程耦合。仅占总可能连接数的10%,小世界网络模型就能产生与将VIP产生细胞与所有其他细胞连接的平均场模型相似的相位同步指数。部分去除随机连接会降低神经元之间的同步性、VIP和cAMP反应元件结合蛋白振荡的幅度、群体中固有周期的平均周期以及振荡细胞的百分比。这些结果表明,小世界连接性在连接数量与昼夜节律幅度和同步性控制之间提供了最佳折衷。该模型预测,SCN中远程VIP连接的小幅减少可能会对日常节律的周期和幅度产生显著影响,这些特征通常与衰老相关。

相似文献

3
A neuropeptide speeds circadian entrainment by reducing intercellular synchrony.
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):E4355-61. doi: 10.1073/pnas.1307088110. Epub 2013 Oct 28.
4
Multicellular model for intercellular synchronization in circadian neural networks.
Biophys J. 2011 Jul 6;101(1):12-20. doi: 10.1016/j.bpj.2011.04.051.
5
Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus.
PLoS Comput Biol. 2007 Apr 13;3(4):e68. doi: 10.1371/journal.pcbi.0030068. Epub 2007 Feb 27.
6
Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons.
Nat Neurosci. 2005 Apr;8(4):476-83. doi: 10.1038/nn1419. Epub 2005 Mar 6.
7
Ontogeny of Circadian Rhythms and Synchrony in the Suprachiasmatic Nucleus.
J Neurosci. 2018 Feb 7;38(6):1326-1334. doi: 10.1523/JNEUROSCI.2006-17.2017. Epub 2017 Oct 20.
9
SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System.
J Neurosci. 2018 Sep 12;38(37):7986-7995. doi: 10.1523/JNEUROSCI.1322-18.2018. Epub 2018 Aug 6.
10
Inhibitory and excitatory networks balance cell coupling in the suprachiasmatic nucleus: A modeling approach.
J Theor Biol. 2016 May 21;397:135-44. doi: 10.1016/j.jtbi.2016.02.039. Epub 2016 Mar 10.

引用本文的文献

1
Suprachiasmatic nucleus-wide estimation of oscillatory temporal dynamics.
PLoS Comput Biol. 2025 Mar 6;21(3):e1012855. doi: 10.1371/journal.pcbi.1012855. eCollection 2025 Mar.
2
The Functional Connectome Mediating Circadian Synchrony in the Suprachiasmatic Nucleus.
bioRxiv. 2024 Dec 17:2024.12.06.627294. doi: 10.1101/2024.12.06.627294.
3
The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward.
J Biol Rhythms. 2024 Apr;39(2):135-165. doi: 10.1177/07487304231225706. Epub 2024 Feb 16.
4
Evolutionary Constraints on Connectivity Patterns in the Mammalian Suprachiasmatic Nucleus.
Front Netw Physiol. 2021 Aug 19;1:716883. doi: 10.3389/fnetp.2021.716883. eCollection 2021.
5
Light-induced synchronization of the SCN coupled oscillators and implications for entraining the HPA axis.
Front Endocrinol (Lausanne). 2022 Oct 27;13:960351. doi: 10.3389/fendo.2022.960351. eCollection 2022.
6
Deciphering clock cell network morphology within the biological master clock, suprachiasmatic nucleus: From the perspective of circadian wave dynamics.
PLoS Comput Biol. 2022 Jun 6;18(6):e1010213. doi: 10.1371/journal.pcbi.1010213. eCollection 2022 Jun.
7
Modelling the functional roles of synaptic and extra-synaptic γ-aminobutyric acid receptor dynamics in circadian timekeeping.
J R Soc Interface. 2021 Sep;18(182):20210454. doi: 10.1098/rsif.2021.0454. Epub 2021 Sep 15.
8
Network Structure of the Master Clock Is Important for Its Primary Function.
Front Physiol. 2021 Aug 16;12:678391. doi: 10.3389/fphys.2021.678391. eCollection 2021.
9
Phase Gradients and Anisotropy of the Suprachiasmatic Network: Discovery of Phaseoids.
eNeuro. 2021 Sep 9;8(5). doi: 10.1523/ENEURO.0078-21.2021. Print 2021 Sep-Oct.
10
Astrocytic Modulation of Neuronal Activity in the Suprachiasmatic Nucleus: Insights from Mathematical Modeling.
J Biol Rhythms. 2020 Jun;35(3):287-301. doi: 10.1177/0748730420913672. Epub 2020 Apr 14.

本文引用的文献

1
Synchronization-induced rhythmicity of circadian oscillators in the suprachiasmatic nucleus.
PLoS Comput Biol. 2007 Apr 13;3(4):e68. doi: 10.1371/journal.pcbi.0030068. Epub 2007 Feb 27.
2
A molecular model for intercellular synchronization in the mammalian circadian clock.
Biophys J. 2007 Jun 1;92(11):3792-803. doi: 10.1529/biophysj.106.094086. Epub 2007 Mar 16.
3
Constant light disrupts the developing mouse biological clock.
Pediatr Res. 2006 Sep;60(3):304-8. doi: 10.1203/01.pdr.0000233114.18403.66. Epub 2006 Jul 20.
4
Age-related effects on the biological clock and its behavioral output in a primate.
Chronobiol Int. 2006;23(1-2):451-60. doi: 10.1080/07420520500482090.
6
Spontaneous synchronization of coupled circadian oscillators.
Biophys J. 2005 Jul;89(1):120-9. doi: 10.1529/biophysj.104.058388. Epub 2005 Apr 22.
7
Age-related change and its sex differences in histoarchitecture of the hypothalamic suprachiasmatic nucleus of F344/N rats.
Exp Gerontol. 2005 Mar;40(3):147-55. doi: 10.1016/j.exger.2004.10.003. Epub 2004 Dec 23.
8
Age-related changes in electrophysiological properties of the mouse suprachiasmatic nucleus in vitro.
Brain Res Bull. 2005 Mar 15;65(2):149-54. doi: 10.1016/j.brainresbull.2004.12.006.
9
Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons.
Nat Neurosci. 2005 Apr;8(4):476-83. doi: 10.1038/nn1419. Epub 2005 Mar 6.
10
Orchestrating time: arrangements of the brain circadian clock.
Trends Neurosci. 2005 Mar;28(3):145-51. doi: 10.1016/j.tins.2005.01.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验