Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130.
Proc Natl Acad Sci U S A. 2013 Nov 12;110(46):E4355-61. doi: 10.1073/pnas.1307088110. Epub 2013 Oct 28.
Shift work or transmeridian travel can desynchronize the body's circadian rhythms from local light-dark cycles. The mammalian suprachiasmatic nucleus (SCN) generates and entrains daily rhythms in physiology and behavior. Paradoxically, we found that vasoactive intestinal polypeptide (VIP), a neuropeptide implicated in synchrony among SCN cells, can also desynchronize them. The degree and duration of desynchronization among SCN neurons depended on both the phase and the dose of VIP. A model of the SCN consisting of coupled stochastic cells predicted both the phase- and the dose-dependent response to VIP and that the transient phase desynchronization, or "phase tumbling", could arise from intrinsic, stochastic noise in small populations of key molecules (notably, Period mRNA near its daily minimum). The model also predicted that phase tumbling following brief VIP treatment would accelerate entrainment to shifted environmental cycles. We tested this using a prepulse of VIP during the day before a shift in either a light cycle in vivo or a temperature cycle in vitro. Although VIP during the day does not shift circadian rhythms, the VIP pretreatment approximately halved the time required for mice to reentrain to an 8-h shifted light schedule and for SCN cultures to reentrain to a 10-h shifted temperature cycle. We conclude that VIP below 100 nM synchronizes SCN cells and above 100 nM reduces synchrony in the SCN. We show that exploiting these mechanisms that transiently reduce cellular synchrony before a large shift in the schedule of daily environmental cues has the potential to reduce jet lag.
轮班工作或跨时区旅行会使身体的昼夜节律与当地的明暗周期不同步。哺乳动物的视交叉上核(SCN)产生并调节生理和行为的日常节律。矛盾的是,我们发现血管活性肠肽(VIP),一种参与 SCN 细胞同步的神经肽,也可以使它们不同步。SCN 神经元之间的不同步程度和持续时间既取决于 VIP 的相位又取决于剂量。由耦合随机细胞组成的 SCN 模型预测了对 VIP 的相位和剂量依赖性反应,并且瞬态相位去同步,或“相位滚动”,可能源自关键分子(特别是接近其每日最小值的 Period mRNA)的固有随机噪声。该模型还预测,在短暂的 VIP 处理后,相位滚动将加速对环境周期变化的适应。我们使用在体内光周期或体外温度周期转移之前白天的 VIP 预脉冲来测试这一点。尽管白天的 VIP 不会改变昼夜节律,但 VIP 预处理可将小鼠重新适应 8 小时转移光时间表的时间和 SCN 培养物重新适应 10 小时转移温度周期的时间缩短约一半。我们得出的结论是,低于 100 nM 的 VIP 会使 SCN 细胞同步,而高于 100 nM 的 VIP 会降低 SCN 中的同步性。我们表明,在每日环境提示的时间表发生重大变化之前,利用这些短暂降低细胞同步性的机制有可能减少时差反应。