Tito Maria, Cabrerizo Mercedes, Ayala Melvin, Barreto Armando, Miller Ian, Jayakar Prasanna, Adjouadi Malek
Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA.
Comput Biol Med. 2009 Jul;39(7):604-14. doi: 10.1016/j.compbiomed.2009.04.005. Epub 2009 May 20.
This study provides a performance evaluation of the correlation sum in terms of accuracy, sensitivity, and specificity in its ability to classify seizure files from non-seizure files. The main thrust of the study is whether computable properties ("metrics") of EEG tracings over time allow a seizure to be detected. This study evaluates raw intracranial EEG (iEEG) recordings with the intent to detect a seizure and classify different EEG epoch files. One hundred twenty-six iEEG files from eleven sequential patients are processed and the correlation sum is extracted from non-overlapping scrolling windows of 1-s duration. The novelty of this research is in defining a generalized nonlinear approach to classify EEG seizure segments by introducing nonlinear decision functions with the flexibility in choosing any degree of complexity and with any number of dimensions, lending resiliency to data overlap and opportunity for multidimensional data analysis. A singular contribution of this work is in determining a 2-D decision plane, in this case, where duration is one dimension and window-based minima of the correlation sum is the second dimension. Also, experimental observations clearly indicate that a significant drop in the magnitude of the correlation sum signal actually coincides with the clinical seizure onset more so than the electrographic seizure onset as provided by the medical experts. The method with k-fold cross validation performed with an accuracy of 91.84%, sensitivity of 92.31%, and specificity of 91.67%, which makes this classification method most suitable for offline seizure detection applications.
本研究对关联总和在区分癫痫发作文件与非癫痫发作文件时的准确性、敏感性和特异性方面进行了性能评估。该研究的主要重点是,随着时间推移脑电图描记的可计算属性(“指标”)是否能够检测到癫痫发作。本研究评估原始颅内脑电图(iEEG)记录,旨在检测癫痫发作并对不同的脑电图时段文件进行分类。对来自11例连续患者的126份iEEG文件进行了处理,并从持续时间为1秒的非重叠滚动窗口中提取关联总和。本研究的新颖之处在于,通过引入具有选择任意复杂度和任意维度灵活性的非线性决策函数,定义了一种广义非线性方法来对脑电图癫痫发作片段进行分类,这为数据重叠提供了弹性,并为多维数据分析提供了机会。这项工作的一个独特贡献在于确定了一个二维决策平面,在这种情况下,持续时间是一个维度,基于窗口的关联总和最小值是第二个维度。此外,实验观察清楚地表明,关联总和信号幅度的显著下降实际上与临床癫痫发作开始更为吻合,而不是医学专家提供的脑电图癫痫发作开始。采用k折交叉验证的方法,准确率为91.84%,敏感性为92.31%,特异性为91.67%,这使得这种分类方法最适合离线癫痫发作检测应用。