Bernsdorf Arne, Brand Harald, Hellmann Robert, Köckerling Martin, Schulz Axel, Villinger Alexander, Voss Karsten
Abteilung Anorganische Chemie, Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany.
J Am Chem Soc. 2009 Jul 1;131(25):8958-70. doi: 10.1021/ja902450b.
The addition of alkali or silver salts of dicyanoamide (dca), tricyanomethanide (tcm) and tetracyanoborate (tcb) to a solution of B(C(6)F(5))(3) in diethyl ether affords salts containing very voluminous B(C(6)F(5))(3) adduct anions of the type [E(CN)(n)(-)] x B(C(6)F(5))(3): E = N (dca_nb with n = 1, 2; b = B(C(6)F(5))(3)); E = C (tcm_nb with n = 1, 2, 3), and E = B (tcb_nb with n = 1, 2, 3, 4). Salts bearing these anions such as B(CN) x B(C(6)F(5))(3)(-) (= [B(CN)(4)(-)] x B(C(6)F(5))(3)), C(CN) x B(C(6)F(5))(3)(-) (= [C(CN)(3)(-)] x B(C(6)F(5))(3)), and N(CN) x B(C(6)F(5))(3)(-) (=[N(CN)(2)(-)] x B(C(6)F(5))(3)) can be prepared in good yields. They are thermally stable up to over 200 degrees C and dissolve in polar organic solvents. Depending on the stoichiometry mono-, di-, tri-, or tetraadduct formation is observed. The solid state structures of dca_2b, tcm_3b and tcb_4b salts show only long cation...anion contacts and thereby weak interactions, large anion volumes and only small distortions of the dca, tcm or tcb core enwrapped between B(C(6)F(5))(3) groups. That is why these anions can be regarded as weakly coordinating anions. On the basis of B3LYP/6-31+G(d) computations the energetics, structural trends and charge transfer of the adduct anion formation were studied. Since tcm_3b and tcb_4b are easily accessible and can also be prepared in large quantities, these anions may be utilized as a true alternative to other widely used weakly coordinating anions. Moreover, for both steric and electronic reasons it seems reasonable to expect that as counterions for cationic early transition metal catalysts such anions may show reduced ion pairing and hence increased catalytic activity.
向二乙醚中的B(C₆F₅)₃溶液中加入双氰胺(dca)、三氰甲烷化物(tcm)和四氰硼酸盐(tcb)的碱金属盐或银盐,可得到含有非常庞大的B(C₆F₅)₃加合物阴离子的盐,其类型为[E(CN)ₙ⁻]ₓ[B(C₆F₅)₃]ₙ:E = N(dca_nb,n = 1, 2;b = B(C₆F₅)₃);E = C(tcm_nb,n = 1, 2, 3),以及E = B(tcb_nb,n = 1, 2, 3, 4)。带有这些阴离子的盐,如B[(CN)ₓB(C₆F₅)₃]₄⁻(= [B(CN)₄⁻]ₓ[B(C₆F₅)₃]₄)、C[(CN)ₓB(C₆F₅)₃]₃⁻(= [C(CN)₃⁻]ₓ[B(C₆F₅)₃]₃)和N[(CN)ₓB(C₆F₅)₃]₂⁻(= [N(CN)₂⁻]ₓ[B(C₆F₅)₃]₂)可以高收率制备。它们在高达200多摄氏度时热稳定,且可溶于极性有机溶剂。根据化学计量比,观察到单加合物、二加合物、三加合物或四加合物的形成。dca_2b、tcm_3b和tcb_4b盐的固态结构仅显示出长的阳离子……阴离子接触,从而呈现弱相互作用、大的阴离子体积以及包裹在B(C₆F₅)₃基团之间的dca、tcm或tcb核心仅有小的变形。这就是为什么这些阴离子可被视为弱配位阴离子。基于B3LYP/6 - 31 + G(d)计算,研究了加合物阴离子形成的能量学、结构趋势和电荷转移。由于tcm_3b和tcb_4b易于获得且也可大量制备这些阴离子,它们可作为其他广泛使用的弱配位阴离子的真正替代品。此外,出于空间和电子方面的原因,似乎有理由期望作为阳离子早期过渡金属催化剂的抗衡离子,这样的阴离子可能显示出减少的离子对作用,从而提高催化活性。