Suppr超能文献

具有混合连续和无序分类变量的结构方程模型的贝叶斯半参数分析。

Bayesian semiparametric analysis of structural equation models with mixed continuous and unordered categorical variables.

作者信息

Song Xin-Yuan, Xia Ye-Mao, Lee Sik-Yum

机构信息

Department of Statistics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.

出版信息

Stat Med. 2009 Jul 30;28(17):2253-76. doi: 10.1002/sim.3612.

Abstract

Recently, structural equation models (SEMs) have been applied for analyzing interrelationships among observed and latent variables in biological and medical research. Latent variables in these models are typically assumed to have a normal distribution. This article considers a Bayesian semparametric SEM with covariates, and mixed continuous and unordered categorical variables, in which the explanatory latent variables in the structural equation are modeled via an appropriate truncated Dirichlet process with a stick-breaking procedure. Results obtained from a simulation study and an analysis of a real medical data set are presented to illustrate the methodology.

摘要

最近,结构方程模型(SEMs)已被应用于分析生物学和医学研究中观测变量和潜在变量之间的相互关系。这些模型中的潜在变量通常假定具有正态分布。本文考虑了一种带有协变量以及混合连续和无序分类变量的贝叶斯半参数结构方程模型,其中结构方程中的解释性潜在变量通过具有折断棒过程的适当截断狄利克雷过程进行建模。给出了模拟研究和真实医学数据集分析的结果,以说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验