Suppr超能文献

物种组成的年际变化被解释为季节性夹带混沌。

Interannual variability in species composition explained as seasonally entrained chaos.

作者信息

Dakos Vasilis, Benincà Elisa, van Nes Egbert H, Philippart Catharina J M, Scheffer Marten, Huisman Jef

机构信息

Department of Aquatic Ecology and Water Quality Management, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.

出版信息

Proc Biol Sci. 2009 Aug 22;276(1669):2871-80. doi: 10.1098/rspb.2009.0584. Epub 2009 May 27.

Abstract

The species composition of plankton, insect and annual plant communities may vary markedly from year to year. Such interannual variability is usually thought to be driven by year-to-year variation in weather conditions. Here we examine an alternative explanation. We studied the effects of regular seasonal forcing on a multi-species predator-prey model consisting of phytoplankton and zooplankton species. The model predicts that interannual variability in species composition can easily arise without interannual variability in external conditions. Seasonal forcing increased the probability of chaos in our model communities, but squeezed these irregular species dynamics within the seasonal cycle. As a result, the population dynamics had a peculiar character. Consistent with long-term time series of natural plankton communities, seasonal variation led to a distinct seasonal succession of species, yet the species composition varied from year to year in an irregular fashion. Our results suggest that interannual variability in species composition is an intrinsic property of multi-species communities in seasonal environments.

摘要

浮游生物、昆虫和一年生植物群落的物种组成可能每年都有显著变化。这种年际变化通常被认为是由天气条件的逐年变化驱动的。在这里,我们研究另一种解释。我们研究了定期季节性强迫对由浮游植物和浮游动物物种组成的多物种捕食者 - 猎物模型的影响。该模型预测,物种组成的年际变化可以在外部条件没有年际变化的情况下轻易出现。季节性强迫增加了我们模型群落中出现混沌的概率,但将这些不规则的物种动态压缩在季节周期内。结果,种群动态具有独特的特征。与自然浮游生物群落的长期时间序列一致,季节性变化导致了物种明显的季节性演替,但物种组成每年都以不规则的方式变化。我们的结果表明,物种组成的年际变化是季节性环境中多物种群落的固有属性。

相似文献

1
Interannual variability in species composition explained as seasonally entrained chaos.
Proc Biol Sci. 2009 Aug 22;276(1669):2871-80. doi: 10.1098/rspb.2009.0584. Epub 2009 May 27.
2
Successional dynamics in the seasonally forced diamond food web.
Am Nat. 2012 Jul;180(1):1-16. doi: 10.1086/665998. Epub 2012 May 21.
3
Successional state dynamics: a novel approach to modeling nonequilibrium foodweb dynamics.
J Theor Biol. 2010 Feb 21;262(4):584-95. doi: 10.1016/j.jtbi.2009.10.018. Epub 2009 Oct 25.
4
Plankton dynamics across the freshwater, transitional and marine research sites of the LTER-Italy Network. Patterns, fluctuations, drivers.
Sci Total Environ. 2018 Jun 15;627:373-387. doi: 10.1016/j.scitotenv.2018.01.153. Epub 2018 Feb 3.
5
Intermittent instability is widespread in plankton communities.
Ecol Lett. 2023 Mar;26(3):470-481. doi: 10.1111/ele.14168. Epub 2023 Jan 27.
6
Temperature is the key factor explaining interannual variability of Daphnia development in spring: a modelling study.
Oecologia. 2008 Sep;157(3):531-43. doi: 10.1007/s00442-008-1081-3. Epub 2008 Jun 24.
7
Chaos in a long-term experiment with a plankton community.
Nature. 2008 Feb 14;451(7180):822-5. doi: 10.1038/nature06512.
9
Seasonal forcing and multi-year cycles in interacting populations: lessons from a predator-prey model.
J Math Biol. 2013 Dec;67(6-7):1741-64. doi: 10.1007/s00285-012-0612-z. Epub 2012 Nov 9.
10
Coupled predator-prey oscillations in a chaotic food web.
Ecol Lett. 2009 Dec;12(12):1367-78. doi: 10.1111/j.1461-0248.2009.01391.x. Epub 2009 Oct 20.

引用本文的文献

1
Plankton Communities Behave Chaotically Under Seasonal or Stochastic Temperature Forcings.
Ecol Evol. 2025 Aug 16;15(8):e71930. doi: 10.1002/ece3.71930. eCollection 2025 Aug.
4
Time delays modulate the stability of complex ecosystems.
Nat Ecol Evol. 2023 Oct;7(10):1610-1619. doi: 10.1038/s41559-023-02158-x. Epub 2023 Aug 17.
5
Inter-annual variation in amphibian larval interspecies interactions.
Ecol Evol. 2023 Jul 4;13(7):e10221. doi: 10.1002/ece3.10221. eCollection 2023 Jul.
6
Seasonal dynamics of marine protist communities in tidally mixed coastal waters.
Mol Ecol. 2022 Jul;31(14):3761-3783. doi: 10.1111/mec.16539. Epub 2022 Jun 16.
7
Temporal dynamics of freshwater planktonic parasites inferred using a DNA metabarcoding time-series.
Parasitology. 2021 Nov;148(13):1602-1611. doi: 10.1017/S0031182021001293. Epub 2021 Jul 19.
8
Neutral competition boosts cycles and chaos in simulated food webs.
R Soc Open Sci. 2020 Jun 17;7(6):191532. doi: 10.1098/rsos.191532. eCollection 2020 Jun.
9
Period doubling as an indicator for ecosystem sensitivity to climate extremes.
Sci Rep. 2019 Dec 20;9(1):19577. doi: 10.1038/s41598-019-56080-z.

本文引用的文献

2
Competition of phytoplankton under fluctuating light.
Am Nat. 2001 Feb;157(2):170-87. doi: 10.1086/318628.
3
Fundamental unpredictability in multispecies competition.
Am Nat. 2001 May;157(5):488-94. doi: 10.1086/319929.
5
Complex food webs prevent competitive exclusion among producer species.
Proc Biol Sci. 2008 Nov 7;275(1650):2507-14. doi: 10.1098/rspb.2008.0718.
6
Oceans. On phytoplankton trends.
Science. 2008 Mar 7;319(5868):1346-8. doi: 10.1126/science.1151330.
7
High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn.
Nature. 2008 Mar 6;452(7183):84-7. doi: 10.1038/nature06610.
8
Chaos in a long-term experiment with a plankton community.
Nature. 2008 Feb 14;451(7180):822-5. doi: 10.1038/nature06512.
9
Experimental demonstration of chaotic instability in biological nitrification.
ISME J. 2007 Sep;1(5):385-93. doi: 10.1038/ismej.2007.45. Epub 2007 Jul 12.
10
Environmental forcing as a main determinant of bloom dynamics of the Chrysochromulina algae.
Proc Biol Sci. 2006 Dec 22;273(1605):3047-55. doi: 10.1098/rspb.2006.3656.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验