Suppr超能文献

复杂的食物网可防止生产者物种之间的竞争排斥。

Complex food webs prevent competitive exclusion among producer species.

作者信息

Brose Ulrich

机构信息

Department of Biology, Darmstadt University of Technology, Schnittspahnstrasse 10, 64287 Darmstadt, Germany.

出版信息

Proc Biol Sci. 2008 Nov 7;275(1650):2507-14. doi: 10.1098/rspb.2008.0718.

Abstract

Herbivorous top-down forces and bottom-up competition for nutrients determine the coexistence and relative biomass patterns of producer species. Combining models of predator-prey and producer-nutrient interactions with a structural model of complex food webs, I investigated these two aspects in a dynamic food-web model. While competitive exclusion leads to persistence of only one producer species in 99.7% of the simulated simple producer communities without consumers, embedding the same producer communities in complex food webs generally yields producer coexistence. In simple producer communities, the producers with the most efficient nutrient-intake rates increase in biomass until they competitively exclude inferior producers. In food webs, herbivory predominantly reduces the biomass density of those producers that dominated in producer communities, which yields a more even biomass distribution. In contrast to prior analyses of simple modules, this facilitation of producer coexistence by herbivory does not require a trade-off between the nutrient-intake efficiency and the resistance to herbivory. The local network structure of food webs (top-down effects of the number of herbivores and the herbivores' maximum consumption rates) and the nutrient supply (bottom-up effect) interactively determine the relative biomass densities of the producer species. A strong negative feedback loop emerges in food webs: factors that increase producer biomasses also increase herbivory, which reduces producer biomasses. This negative feedback loop regulates the coexistence and biomass patterns of the producers by balancing biomass increases of producers and biomass fluxes to herbivores, which prevents competitive exclusion.

摘要

食草动物的自上而下的力量以及对养分的自下而上的竞争决定了生产者物种的共存和相对生物量模式。我将捕食者 - 猎物和生产者 - 养分相互作用模型与复杂食物网的结构模型相结合,在一个动态食物网模型中研究了这两个方面。在没有消费者的情况下,竞争排斥导致在99.7%的模拟简单生产者群落中仅有一种生产者物种持续存在,而将相同的生产者群落嵌入复杂食物网中通常会产生生产者共存的情况。在简单生产者群落中,养分摄取率最高的生产者生物量增加,直到它们通过竞争排斥掉劣势生产者。在食物网中,食草作用主要降低了在生产者群落中占主导地位的那些生产者的生物量密度,从而产生了更均匀的生物量分布。与先前对简单模块的分析不同,食草作用对生产者共存的这种促进作用并不需要在养分摄取效率和对食草作用的抗性之间进行权衡。食物网的局部网络结构(食草动物数量的自上而下的影响以及食草动物的最大消费率)和养分供应(自下而上的影响)相互作用地决定了生产者物种的相对生物量密度。在食物网中出现了一个强烈的负反馈回路:增加生产者生物量的因素也会增加食草作用,而这又会降低生产者生物量。这个负反馈回路通过平衡生产者的生物量增加和流向食草动物的生物量通量来调节生产者的共存和生物量模式,从而防止竞争排斥。

相似文献

1
Complex food webs prevent competitive exclusion among producer species.
Proc Biol Sci. 2008 Nov 7;275(1650):2507-14. doi: 10.1098/rspb.2008.0718.
2
Herbivore vs. nutrient control of marine primary producers: context-dependent effects.
Ecology. 2006 Dec;87(12):3128-39. doi: 10.1890/0012-9658(2006)87[3128:hvncom]2.0.co;2.
3
Bottom-up and top-down effects of browning and warming on shallow lake food webs.
Glob Chang Biol. 2019 Feb;25(2):504-521. doi: 10.1111/gcb.14521. Epub 2018 Dec 14.
6
Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation.
PLoS Biol. 2018 Jan 9;16(1):e2003446. doi: 10.1371/journal.pbio.2003446. eCollection 2018 Jan.
7
A cross-system synthesis of consumer and nutrient resource control on producer biomass.
Ecol Lett. 2008 Jul;11(7):740-55. doi: 10.1111/j.1461-0248.2008.01192.x. Epub 2008 Apr 25.
8
Community composition modifies direct and indirect effects of pesticides in freshwater food webs.
Sci Total Environ. 2020 Oct 15;739:139531. doi: 10.1016/j.scitotenv.2020.139531. Epub 2020 May 19.
9
Competition and predation in simple food webs: intermediately strong trade-offs maximize coexistence.
Proc Biol Sci. 2003 Dec 22;270(1533):2591-8. doi: 10.1098/rspb.2003.2532.
10
Intraguild predation enhances biodiversity and functioning in complex food webs.
Ecology. 2019 Mar;100(3):e02616. doi: 10.1002/ecy.2616. Epub 2019 Feb 21.

引用本文的文献

1
Multitrophic Diversity of the Biotic Community Drives Ecosystem Multifunctionality in Alpine Grasslands.
Ecol Evol. 2024 Nov 5;14(11):e70511. doi: 10.1002/ece3.70511. eCollection 2024 Nov.
2
Herbivore and native plant diversity synergistically resist alien plant invasion regardless of nutrient conditions.
Plant Divers. 2023 Oct 6;46(5):640-647. doi: 10.1016/j.pld.2023.09.002. eCollection 2024 Sep.
3
How artificial light at night may rewire ecological networks: concepts and models.
Philos Trans R Soc Lond B Biol Sci. 2023 Dec 18;378(1892):20220368. doi: 10.1098/rstb.2022.0368. Epub 2023 Oct 30.
4
Effects of temporal abiotic drivers on the dynamics of an allometric trophic network model.
Ecol Evol. 2023 Mar 23;13(3):e9928. doi: 10.1002/ece3.9928. eCollection 2023 Mar.
5
Phage strategies facilitate bacterial coexistence under environmental variability.
PeerJ. 2021 Nov 4;9:e12194. doi: 10.7717/peerj.12194. eCollection 2021.
7
An ecological network approach to predict ecosystem service vulnerability to species losses.
Nat Commun. 2021 Mar 11;12(1):1586. doi: 10.1038/s41467-021-21824-x.
9
Non-trophic interactions strengthen the diversity-functioning relationship in an ecological bioenergetic network model.
PLoS Comput Biol. 2019 Aug 29;15(8):e1007269. doi: 10.1371/journal.pcbi.1007269. eCollection 2019 Aug.
10
The biggest losers: habitat isolation deconstructs complex food webs from top to bottom.
Proc Biol Sci. 2019 Aug 14;286(1908):20191177. doi: 10.1098/rspb.2019.1177. Epub 2019 Jul 31.

本文引用的文献

1
Success and its limits among structural models of complex food webs.
J Anim Ecol. 2008 May;77(3):512-9. doi: 10.1111/j.1365-2656.2008.01362.x. Epub 2008 Feb 12.
2
Allometric degree distributions facilitate food-web stability.
Nature. 2007 Dec 20;450(7173):1226-9. doi: 10.1038/nature06359.
3
Reconciling complexity with stability in naturally assembling food webs.
Nature. 2007 Oct 4;449(7162):599-602. doi: 10.1038/nature06154.
4
Energetics, patterns of interaction strengths, and stability in real ecosystems.
Science. 1995 Sep 1;269(5228):1257-60. doi: 10.1126/science.269.5228.1257.
5
Consumer-resource body-size relationships in natural food webs.
Ecology. 2006 Oct;87(10):2411-7. doi: 10.1890/0012-9658(2006)87[2411:cbrinf]2.0.co;2.
6
Allometric scaling enhances stability in complex food webs.
Ecol Lett. 2006 Nov;9(11):1228-36. doi: 10.1111/j.1461-0248.2006.00978.x.
7
8
Does foraging adaptation create the positive complexity-stability relationship in realistic food-web structure?
J Theor Biol. 2006 Feb 7;238(3):646-51. doi: 10.1016/j.jtbi.2005.06.028. Epub 2005 Aug 8.
9
Consumer-food systems: why type I functional responses are exclusive to filter feeders.
Biol Rev Camb Philos Soc. 2004 May;79(2):337-49. doi: 10.1017/s1464793103006286.
10
Limits to trophic levels and omnivory in complex food webs: theory and data.
Am Nat. 2004 Mar;163(3):458-68. doi: 10.1086/381964. Epub 2004 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验