Suppr超能文献

Phototransformations of selected pharmaceuticals under low-energy UVA-vis and powerful UVB-UVA irradiations in aqueous solutions--the role of natural dissolved organic chromophoric material.

作者信息

Peuravuori J, Pihlaja K

机构信息

Department of Chemistry, University of Turku, Turku 20014, Finland.

出版信息

Anal Bioanal Chem. 2009 Jul;394(6):1621-36. doi: 10.1007/s00216-009-2816-7. Epub 2009 May 28.

Abstract

The kinetics of simulated low-energy daylight (UVA-vis) and powerful combined ultraviolet B and A (UVB-UVA) induced direct and indirect phototransformations of four pharmaceuticals, i.e., ibuprofen, metoprolol, carbamazepine, and warfarin, which were investigated in dilute solutions of pure laboratory and natural humic waters. The results strengthen the essential function of natural chromophores in dissolved organic material (CDOM) as principal photosensitizer toward indirect phototransformations of pharmaceuticals in natural conditions under available low-energy UVA-vis and slight UVB radiations. The results confirmed that organic micropollutants are able to undergo a direct photolysis if their absorbance spectra overlap the spectral range of the available radiation but only if the radiation is strong enough, e.g., ibuprofen is able to undergo only indirect photolysis via different pathways in all realistic conditions. The action of nitrate anions as photosensitizers in the applied conditions proved to be of little importance. High-performance size-exclusion chromatographic experiments verified that the rate constants obtained under the low-energy UVA-vis and powerful UVB-UVA irradiations for the decreased amounts of the two largest molecular size fractions of CDOM were quite close to the rate constants detected for the increased amounts of the next five molecular size fractions with smaller molecular sizes. The decreased contents of the two largest molecular size fractions correlated quite well with the decreased contents of the studied pharmaceuticals under the low-energy UVA-vis irradiation process but somewhat less under the powerful UVB-UVA irradiation. The photochemically induced decomposition of the CDOM aggregates appears to increase the amounts of smaller molecular size fractions and simultaneously produce via CDOM-stimulated radical reactions indirect structural transformations of pharmaceuticals. Apparent quantum yields were estimated for the transformation-degradation of the two largest molecular-size CDOM aggregates under low-energy UVA-vis and powerful UVB-UVA irradiations.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验