Grompone von Gioi Rafael, Jakubowicz Jérémie
Universidad de la República, Montevideo, Uruguay.
J Physiol Paris. 2009 Jan-Mar;103(1-2):4-17. doi: 10.1016/j.jphysparis.2009.05.002. Epub 2009 May 25.
The aim of this paper is to show some recent developments of computational Gestalt theory, as pioneered by Desolneux, Moisan and Morel. The new results allow to predict much more accurately the detection thresholds. This step is unavoidable if one wants to analyze visual detection thresholds in the light of computational Gestalt theory. The paper first recalls the main elements of computational Gestalt theory. It points out a precision issue in this theory, essentially due to the use of discrete probability distributions. It then proposes to overcome this issue by using continuous probability distributions and illustrates it on the meaningful alignment detector of Desolneux et al.
本文旨在展示由德索尔纳克斯、穆瓦桑和莫雷尔开创的计算格式塔理论的一些最新进展。新结果能够更准确地预测检测阈值。如果想要依据计算格式塔理论分析视觉检测阈值,这一步是不可避免的。本文首先回顾了计算格式塔理论的主要内容。它指出了该理论中的一个精度问题,主要是由于使用了离散概率分布。然后提出通过使用连续概率分布来克服这个问题,并在德索尔纳克斯等人的有意义对齐检测器上进行了说明。