Fu Wenjie, Ray Pradipta, Xing Eric P
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Bioinformatics. 2009 Jun 15;25(12):i321-9. doi: 10.1093/bioinformatics/btp230.
Identifying transcription factor binding sites (TFBSs) encoding complex regulatory signals in metazoan genomes remains a challenging problem in computational genomics. Due to degeneracy of nucleotide content among binding site instances or motifs, and intricate 'grammatical organization' of motifs within cis-regulatory modules (CRMs), extant pattern matching-based in silico motif search methods often suffer from impractically high false positive rates, especially in the context of analyzing large genomic datasets, and noisy position weight matrices which characterize binding sites. Here, we try to address this problem by using a framework to maximally utilize the information content of the genomic DNA in the region of query, taking cues from values of various biologically meaningful genetic and epigenetic factors in the query region such as clade-specific evolutionary parameters, presence/absence of nearby coding regions, etc. We present a new method for TFBS prediction in metazoan genomes that utilizes both the CRM architecture of sequences and a variety of features of individual motifs. Our proposed approach is based on a discriminative probabilistic model known as conditional random fields that explicitly optimizes the predictive probability of motif presence in large sequences, based on the joint effect of all such features.
This model overcomes weaknesses in earlier methods based on less effective statistical formalisms that are sensitive to spurious signals in the data. We evaluate our method on both simulated CRMs and real Drosophila sequences in comparison with a wide spectrum of existing models, and outperform the state of the art by 22% in F1 score.
The code is publicly available at http://www.sailing.cs.cmu.edu/discover.html.
Supplementary data are available at Bioinformatics online.
在后生动物基因组中识别编码复杂调控信号的转录因子结合位点(TFBSs)仍然是计算基因组学中的一个具有挑战性的问题。由于结合位点实例或基序之间核苷酸含量的简并性,以及顺式调控模块(CRM)内基序复杂的“语法组织”,现有的基于模式匹配的计算机基序搜索方法往往存在不切实际的高假阳性率,特别是在分析大型基因组数据集以及表征结合位点的有噪声的位置权重矩阵的情况下。在这里,我们试图通过使用一个框架来解决这个问题,该框架最大限度地利用查询区域中基因组DNA的信息内容,从查询区域中各种具有生物学意义的遗传和表观遗传因素的值中获取线索,如特定进化枝的进化参数、附近编码区域的有无等。我们提出了一种在后生动物基因组中预测TFBS的新方法,该方法同时利用了序列的CRM结构和单个基序的各种特征。我们提出的方法基于一种称为条件随机场的判别概率模型,该模型基于所有这些特征的联合效应,明确优化大序列中基序存在的预测概率。
该模型克服了早期基于不太有效的统计形式主义的方法的弱点,这些方法对数据中的虚假信号敏感。我们将我们的方法与广泛的现有模型进行比较,在模拟的CRM和真实的果蝇序列上进行评估,F1分数比现有技术高出22%。
代码可在http://www.sailing.cs.cmu.edu/discover.html上公开获取。
补充数据可在《生物信息学》在线获取。