Suppr超能文献

乳腺癌前哨淋巴结活检中瘤周及乳晕下注射的补充方法

Complement of peritumoral and subareolar injection in breast cancer sentinel lymph node biopsy.

作者信息

Noguchi Masakuni, Inokuchi Masashi, Zen Yo

机构信息

Department of Breast Oncology, Kanazawa University Hospital, Kanazawa, Japan.

出版信息

J Surg Oncol. 2009 Aug 1;100(2):100-5. doi: 10.1002/jso.21308.

Abstract

BACKGROUND

The optimal site for injection of mapping tracers is controversial in sentinel lymph node (SLN) biopsy for breast cancer. We evaluated whether a combination of peritumoral (PT) injection and subareolar (SA) injection can improve the identification rate of SLN biopsy and decrease the false-negative rate.

METHODS

Two hundred one patients underwent SLN biopsy with PT injection of radioisotope and SA injection of blue dye.

RESULTS

The overall identification rate for blue and/or hot lymph nodes was 99.5%; the identification rate of blue-dyed lymph nodes was 98.0% and that of hot lymph nodes was 97.0%. However, no concordance between the hot node and the blue node was found in 17 patients (8.5%). Among SLN-positive 51 patients, 4 patients had blue-only positive SLN and 7 had hot-only positive SLN. Consequently, the false-negative rates were at least 7.8% for PT injection and 13.7% for SA injection, while axillary lymph node dissection was not performed in SLN-negative patients. However, a combination of both injections significantly decreased the false-negative rate.

CONCLUSIONS

The success of SLN mapping is optimized not only by using dye and isotope in combination but also by using PT and SA injections in combination.

摘要

背景

在乳腺癌前哨淋巴结(SLN)活检中,注射定位示踪剂的最佳部位存在争议。我们评估了瘤周(PT)注射和乳晕下(SA)注射相结合是否能提高SLN活检的识别率并降低假阴性率。

方法

201例患者接受了SLN活检,采用PT注射放射性同位素和SA注射蓝色染料。

结果

蓝色和/或热淋巴结的总体识别率为99.5%;蓝色染色淋巴结的识别率为98.0%,热淋巴结的识别率为97.0%。然而,17例患者(8.5%)的热淋巴结和蓝色淋巴结之间未发现一致性。在51例SLN阳性患者中,4例患者的SLN仅为蓝色阳性,7例仅为热阳性。因此,PT注射的假阴性率至少为7.8%,SA注射的假阴性率为13.7%,而SLN阴性患者未进行腋窝淋巴结清扫。然而,两种注射方法相结合可显著降低假阴性率。

结论

SLN定位的成功不仅通过联合使用染料和同位素来优化,还通过联合使用PT和SA注射来优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验