Uludağ Kâmil, Müller-Bierl Bernd, Uğurbil Kâmil
Max-Planck Institute for Biological Cybernetics, Hochfeld Magnetresonanz Zentrum, Spemannstr. 41, Tübingen 72076, Germany.
Neuroimage. 2009 Oct 15;48(1):150-65. doi: 10.1016/j.neuroimage.2009.05.051. Epub 2009 May 27.
Gradient and spin echo (GRE and SE, respectively) weighted magnetic resonance images report on neuronal activity via changes in deoxygenated hemoglobin content and cerebral blood volume induced by alterations in neuronal activity. Hence, vasculature plays a critical role in these functional signals. However, how the different blood vessels (e.g. arteries, arterioles, capillaries, venules and veins) quantitatively contribute to the functional MRI (fMRI) signals at each field strength, and consequently, how spatially specific these MRI signals are remain a source of discussion. In this study, we utilize an integrative model of the fMRI signals up to 16.4 T, exploiting the increasing body of published information on relevant physiological parameters. Through simulations, extra- and intravascular functional signal contributions were determined as a function of field strength, echo time (TE) and MRI sequence used. The model predicted previously reported effects, such as feasibility of optimization of SE but not the GRE approach to yield larger micro-vascular compared to macro-vascular weighting. In addition, however, micro-vascular effects were found to peak with increasing magnetic fields even in the SE approach, and further increases in magnetic fields imparted no additional benefits besides beyond the inherent signal-to-noise (SNR) gains. Furthermore, for SE, using a TE larger than the tissue T(2) enhances micro-vasculature signal relatively, though compromising SNR for spatial specificity. In addition, the intravascular SE MRI signals do not fully disappear even at high field strength as arteriolar and capillary contributions persist. The model, and the physiological considerations presented here can also be applied in contrast agent experiments and to other models, such as calibrated BOLD approach and vessel size imaging.
梯度回波和自旋回波(分别为GRE和SE)加权磁共振图像通过神经元活动变化引起的脱氧血红蛋白含量和脑血容量变化来反映神经元活动。因此,血管系统在这些功能信号中起着关键作用。然而,不同的血管(如动脉、小动脉、毛细血管、小静脉和静脉)如何在每个场强下对功能磁共振成像(fMRI)信号做出定量贡献,以及这些磁共振成像信号在空间上的特异性如何,仍然是一个有争议的问题。在本研究中,我们利用了一个高达16.4 T的fMRI信号整合模型,利用了越来越多已发表的关于相关生理参数的信息。通过模拟,确定了血管外和血管内功能信号贡献与场强、回波时间(TE)和所用磁共振成像序列的函数关系。该模型预测了先前报道的效应,如优化SE方法而非GRE方法以产生比大血管加权更大的微血管加权的可行性。此外,然而,即使在SE方法中,微血管效应也被发现随着磁场增加而达到峰值,并且磁场进一步增加除了固有信噪比(SNR)增益之外没有带来额外益处。此外,对于SE,使用大于组织T(2)的TE相对增强了微血管信号,尽管为了空间特异性而牺牲了SNR。此外,即使在高场强下,血管内SE磁共振成像信号也不会完全消失,因为小动脉和毛细血管的贡献仍然存在。这里提出的模型和生理考虑也可以应用于造影剂实验和其他模型,如校准的血氧水平依赖(BOLD)方法和血管大小成像。