Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
Anim Reprod Sci. 2010 Feb;117(3-4):279-87. doi: 10.1016/j.anireprosci.2009.04.014. Epub 2009 May 4.
Low sperm survival post-thaw and time-consuming procedures for conventional freezing (CF) hamper the commercial application of cryopreserved boar semen. We had previously proven that boar spermatozoa in the first 10mL of the sperm-rich fraction, SRF (the so-called P1, the sperm-peak portion of the ejaculate) sustain best handling in vitro, since they probably bathe in an aliquot of seminal plasma (SP) with specific composition. Here, we performed three experiments to determine: Exp I: the concentration of bicarbonate among portions of the ejaculate; Exp II: the effects of bicarbonate doses on sperm motility and; Exp III: the outcome of a faster, simpler freezing method (SF), handling P1-spermatozoa packed in MiniFlatPacks (MFP) vs. CF and vs. SRF-spermatozoa (2x2 factorial design). The bicarbonate content in SP was, among portions/fractions of the ejaculate, lowest in P1 (13.71mM/L, P<0.0001, Exp I). Boar spermatozoa require bicarbonate in the extender (to the levels present in P1) to maintain acceptable motility over a 120-h period at 16-17 degrees C (Exp II). Sperm freezing was dramatically shortened (from 8 to 3.5h) by the SF-procedure. P1- and SRF-spermatozoa survived equally both CF- and SF-freezing (% total motility 30min PT; P1-CF: 65.2+/-5.4% and P1-SF: 68.9+/-2.4%; SRF-CF: 64.4+/-2.7%; SRF-SF: 55.8+/-3.1%, ns). Interestingly, in contrast to SRF, there were no significant variations in 30-min PT-survival among either ejaculates or boars when the P1 was frozen, independent of the handling method (CF or SF). In conclusion, such a faster freezing protocol of semen packed in MFP could be advantageously applied to P1-spermatozoa (P1-SF), while the rest of the ejaculated spermatozoa could still be used for production of conventional artificial insemination (AI) doses, thus allowing for a maintained routine management of commercially relevant stud boars.
解冻后精子存活率低和常规冷冻(CF)程序耗时,这阻碍了冷冻猪精液的商业应用。我们之前已经证明,在富含精子的部分(SRF)的前 10 毫升中,猪精子(即所谓的 P1,精液射精液的精子峰部分)在体外处理时表现最好,因为它们可能沐浴在具有特定组成的精液等离子体(SP)的等分部分中。在这里,我们进行了三项实验来确定:实验 I:精液部分的碳酸氢盐浓度;实验 II:碳酸氢盐剂量对精子活力的影响;实验 III:一种更快、更简单的冷冻方法(SF)的结果,处理 MiniFlatPacks(MFP)中的 P1-精子与 CF 和 SRF-精子(2x2 析因设计)。在精液的部分/部分中,SP 中的碳酸氢盐含量在 P1 中最低(13.71mM/L,P<0.0001,实验 I)。猪精子在延长液中需要碳酸氢盐(达到 P1 中的水平),以在 16-17 摄氏度下保持可接受的活力 120 小时(实验 II)。通过 SF 程序,精子冷冻时间大大缩短(从 8 小时缩短至 3.5 小时)。P1 和 SRF 精子在 CF 和 SF 冷冻中均具有同等的存活率(总活力 30 分钟 PT;P1-CF:65.2+/-5.4%和 P1-SF:68.9+/-2.4%;SRF-CF:64.4+/-2.7%;SRF-SF:55.8+/-3.1%,无统计学意义)。有趣的是,与 SRF 不同的是,当冷冻 P1 时,无论处理方法(CF 或 SF)如何,射出精液或公猪之间的 30 分钟 PT 存活率均无显着差异。总之,这种更快的精液 MFP 包装冷冻方案可以有利地应用于 P1 精子(P1-SF),而其余射出的精子仍可用于生产常规人工授精(AI)剂量,从而保持商业相关种猪的常规管理。