Fakayode Sayo O, Brady Pamlea N, Pollard David A, Mohammed Abdul K, Warner Isiah M
Department of Chemistry, Winston-Salem State University, Winston-Salem, NC 27110, USA.
Anal Bioanal Chem. 2009 Jul;394(6):1645-53. doi: 10.1007/s00216-009-2853-2. Epub 2009 May 31.
We report the first combined use of analytical spectroscopy, guest-host chemistry, and multivariate regression analysis for determination of enantiometric composition of multicomponent samples of chiral analytes. Sample solutions containing multicomponent analytes of ephedrine, tryptophan, propranolol, and proline of varying enantiomeric composition with beta-cyclodextrin (BCD) or methyl-beta-cyclodextrin (Me-BCD) as chiral host molecules were investigated using ultraviolet (UV)-visible spectroscopy. The interactions of enantiomers of chiral analytes with chiral hosts resulted in the formation of transient diastereomeric inclusion complexes with varying spectral properties. Multivariate analysis using partial-least-square (PLS) regression was used to correlate subtle changes in the UV-visible spectra of the guest-host complexes with the enantiomeric composition of the calibration samples. These PLS regressions were carefully optimized and then used to predict the enantiomeric composition of multicomponent chiral analytes of validation samples. The results of these validation studies demonstrate the predictive ability of the regression models for determination of future enantiomeric composition of samples. The accuracy of the models to correctly predict the enantiomeric composition of samples, evaluated by use of the root mean square percent relative error (RMS%RE) was analyte and chiral host dependent. In general, better prediction of enantiomeric composition of samples and low RMS%RE values were obtained when Me-BCD was used as the chiral host. The analyses procedure reported here is simple, rapid, and inexpensive. In addition, this approach does not require prior separation of chiral analytes, thus reducing analysis time and eliminating the need for expensive chiral columns.
我们报道了首次将分析光谱法、客体-主体化学和多元回归分析结合用于测定手性分析物多组分样品的对映体组成。使用紫外可见光谱法研究了含有麻黄碱、色氨酸、普萘洛尔和脯氨酸等对映体组成各异的多组分分析物以及β-环糊精(BCD)或甲基-β-环糊精(Me-BCD)作为手性主体分子的样品溶液。手性分析物的对映体与手性主体的相互作用导致形成具有不同光谱特性的瞬态非对映体包合物。使用偏最小二乘(PLS)回归的多元分析用于将客体-主体配合物的紫外可见光谱中的细微变化与校准样品的对映体组成相关联。这些PLS回归经过仔细优化,然后用于预测验证样品中多组分手性分析物的对映体组成。这些验证研究的结果证明了回归模型对未来样品对映体组成测定的预测能力。通过使用均方根相对误差百分比(RMS%RE)评估的模型正确预测样品对映体组成的准确性取决于分析物和手性主体。一般来说,当使用Me-BCD作为手性主体时,对样品对映体组成的预测更好,RMS%RE值更低。本文报道的分析方法简单、快速且成本低廉。此外,这种方法不需要对手性分析物进行预先分离,从而减少了分析时间并消除了对昂贵手性柱的需求。