Department of Chemistry, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, United States.
Department of Chemistry, North Carolina Agricultural and Technical State University, 1601 East Market Street, Greensboro, NC 27411, United States.
Spectrochim Acta A Mol Biomol Spectrosc. 2017 Mar 5;174:316-325. doi: 10.1016/j.saa.2016.11.047. Epub 2016 Dec 5.
The negative health impact of polycyclic aromatic hydrocarbons (PAHs) and differences in pharmacological activity of enantiomers of chiral molecules in humans highlights the need for analysis of PAHs and their chiral analogue molecules in humans. Herein, the first use of cyclodextrin guest-host inclusion complexation, fluorescence spectrophotometry, and chemometric approach to PAH (anthracene) and chiral-PAH analogue derivatives (1-(9-anthryl)-2,2,2-triflouroethanol (TFE)) analyses are reported. The binding constants (K), stoichiometry (n), and thermodynamic properties (Gibbs free energy (ΔG), enthalpy (ΔH), and entropy (ΔS)) of anthracene and enantiomers of TFE-methyl-β-cyclodextrin (Me-β-CD) guest-host complexes were also determined. Chemometric partial-least-square (PLS) regression analysis of emission spectra data of Me-β-CD-guest-host inclusion complexes was used for the determination of anthracene and TFE enantiomer concentrations in Me-β-CD-guest-host inclusion complex samples. The values of calculated K and negative ΔG suggest the thermodynamic favorability of anthracene-Me-β-CD and enantiomeric of TFE-Me-β-CD inclusion complexation reactions. However, anthracene-Me-β-CD and enantiomer TFE-Me-β-CD inclusion complexations showed notable differences in the binding affinity behaviors and thermodynamic properties. The PLS regression analysis resulted in square-correlation-coefficients of 0.997530 or better and a low LOD of 3.81×10M for anthracene and 3.48×10M for TFE enantiomers at physiological conditions. Most importantly, PLS regression accurately determined the anthracene and TFE enantiomer concentrations with an average low error of 2.31% for anthracene, 4.44% for R-TFE and 3.60% for S-TFE. The results of the study are highly significant because of its high sensitivity and accuracy for analysis of PAH and chiral PAH analogue derivatives without the need of an expensive chiral column, enantiomeric resolution, or use of a polarized light.
多环芳烃 (PAHs) 的负面健康影响以及手性分子对映异构体在人类中的药理学活性差异突出表明需要分析 PAHs 及其手性类似物分子在人类中的情况。本文首次报道了环糊精主体-客体包合作用、荧光分光光度法和化学计量学方法在手性 PAH 类似物衍生物 (1-(9-蒽基)-2,2,2-三氟乙醇 (TFE)) 分析中的应用。还确定了蒽和 TFE 对映异构体与甲基-β-环糊精 (Me-β-CD) 主体客体配合物的结合常数 (K)、化学计量比 (n) 和热力学性质 (吉布斯自由能 (ΔG)、焓 (ΔH) 和熵 (ΔS))。使用 Me-β-CD-客体-主体包合物的发射光谱数据的化学计量偏最小二乘 (PLS) 回归分析来测定 Me-β-CD-客体-主体包合物样品中蒽和 TFE 对映异构体的浓度。计算得到的 K 值和负 ΔG 值表明了蒽-Me-β-CD 和 TFE 对映异构体-Me-β-CD 包合反应热力学上的有利性。然而,蒽-Me-β-CD 和对映异构体 TFE-Me-β-CD 包合反应在结合亲和力行为和热力学性质方面表现出显著差异。PLS 回归分析得到的相关系数为 0.997530 或更好,LOD 低至 3.81×10M 用于蒽,3.48×10M 用于 TFE 对映异构体,在生理条件下。最重要的是,PLS 回归准确地确定了蒽和 TFE 对映异构体的浓度,蒽的平均误差低至 2.31%,R-TFE 的误差为 4.44%,S-TFE 的误差为 3.60%。该研究结果意义重大,因为它具有高灵敏度和准确性,无需昂贵的手性柱、对映异构体分辨率或使用偏振光即可分析 PAH 和手性 PAH 类似物衍生物。