Suppr超能文献

细胞周期是一个氧化还原循环:将特定阶段的靶点与细胞命运联系起来。

The cell cycle is a redox cycle: linking phase-specific targets to cell fate.

作者信息

Burhans William C, Heintz Nicholas H

机构信息

Department of Molecular & Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.

出版信息

Free Radic Biol Med. 2009 Nov 1;47(9):1282-93. doi: 10.1016/j.freeradbiomed.2009.05.026. Epub 2009 May 29.

Abstract

Reactive oxygen species (ROS) regulate the strength and duration of signaling through redox-dependent signal transduction pathways via the cyclic oxidation/reduction of cysteine residues in kinases, phosphatases, and other regulatory factors. Signaling circuits may be segregated in organelles or other subcellular domains with distinct redox states, permitting them to respond independently to changes in the oxidation state of two major thiol reductants, glutathione and thioredoxin. Studies in yeast, and in complex eukaryotes, show that oscillations in oxygen consumption, energy metabolism, and redox state are intimately integrated with cell cycle progression. Because signaling pathways play specific roles in different phases of the cell cycle and the hierarchy of redox-dependent regulatory checkpoints changes during cell cycle progression, the effects of ROS on cell fate vary during the cell cycle. In G1, ROS stimulate mitogenic pathways that control the activity of cyclin-dependent kinases (CDKs) and phosphorylation of the retinoblastoma protein (pRB), thereby regulating S-phase entry. In response to oxidative stress, Nrf2 and Foxo3a promote cell survival by inducing the expression of antioxidant enzymes and factors involved in cell cycle withdrawal, such as the cyclin-dependent kinase inhibitor (CKI) p27. In S phase, ROS induce S-phase arrest via PP2A-dependent dephosphorylation of pRB. In precancerous cells, unconstrained mitogenic signaling by activated oncogenes induces replication stress in S phase, which activates the DNA-damage response and induces cell senescence. A number of studies suggest that interactions of ROS with the G1 CDK/CKI network play a fundamental role in senescence, which is considered a barrier to tumorigenesis. Adaptive responses and loss of checkpoint proteins such as p53 and p16(INK4a) allow tumor cells to tolerate constitutive mitogenic signaling and enhanced production of ROS, leading to altered redox status in many fully transformed cells. Alterations in oxidant and energy metabolism of cancer cells have emerged as fertile ground for new therapeutic targets. The present challenge is to identify redox-dependent targets relevant to each cell cycle phase, to understand how these targets control fate decisions, and to describe the mechanisms that link metabolism to cell cycle progression.

摘要

活性氧(ROS)通过激酶、磷酸酶及其他调节因子中半胱氨酸残基的循环氧化/还原,经由氧化还原依赖性信号转导途径调节信号的强度和持续时间。信号转导通路可能在具有不同氧化还原状态的细胞器或其他亚细胞结构域中分隔开来,从而使它们能够独立应对两种主要硫醇还原剂(谷胱甘肽和硫氧还蛋白)氧化状态的变化。对酵母和复杂真核生物的研究表明,氧气消耗、能量代谢和氧化还原状态的振荡与细胞周期进程紧密整合。由于信号转导通路在细胞周期的不同阶段发挥特定作用,且氧化还原依赖性调节检查点的层级在细胞周期进程中会发生变化,因此ROS对细胞命运的影响在细胞周期中也有所不同。在G1期,ROS刺激有丝分裂原通路,该通路控制细胞周期蛋白依赖性激酶(CDK)的活性和视网膜母细胞瘤蛋白(pRB)的磷酸化,从而调节进入S期。作为对氧化应激的反应,Nrf2和Foxo3a通过诱导抗氧化酶以及参与细胞周期退出的因子(如细胞周期蛋白依赖性激酶抑制剂(CKI)p27)的表达来促进细胞存活。在S期,ROS通过PP2A依赖的pRB去磷酸化诱导S期停滞。在癌前细胞中,激活的癌基因不受限制的有丝分裂原信号传导在S期诱导复制应激,从而激活DNA损伤反应并诱导细胞衰老。许多研究表明,ROS与G1 CDK/CKI网络的相互作用在衰老过程中起基本作用,而衰老被认为是肿瘤发生的一个障碍。诸如p53和p16(INK4a)等检查点蛋白的适应性反应和缺失使肿瘤细胞能够耐受组成型有丝分裂原信号传导和ROS产生的增加,导致许多完全转化的细胞中氧化还原状态改变。癌细胞氧化和能量代谢的改变已成为新治疗靶点的丰富来源。目前面临的挑战是确定与每个细胞周期阶段相关的氧化还原依赖性靶点,了解这些靶点如何控制命运决定,并描述将代谢与细胞周期进程联系起来的机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验