Hannemann Frank, Guyot Arnaud, Zöllner Andy, Müller Jürgen J, Heinemann Udo, Bernhardt Rita
Naturwissenschaftlich-Technische Fakultät III, Fachrichtung 8.3-Biochemie, Universität des Saarlandes, Saarbrücken, Germany.
J Inorg Biochem. 2009 Jul;103(7):997-1004. doi: 10.1016/j.jinorgbio.2009.04.010. Epub 2009 May 3.
Dipole moments of proteins arise from helical dipoles, hydrogen bond networks and charged groups at the protein surface. High protein dipole moments were suggested to contribute to the electrostatic steering between redox partners in electron transport chains of respiration, photosynthesis and steroid biosynthesis, although so far experimental evidence for this hypothesis was missing. In order to probe this assumption, we changed the dipole moment of the electron transfer protein adrenodoxin and investigated the influence of this on protein-protein interactions and electron transfer. In bovine adrenodoxin, the [2Fe-2S] ferredoxin of the adrenal glands, a dipole moment of 803 Debye was calculated for a full-length adrenodoxin model based on the Adx(4-108) and the wild type adrenodoxin crystal structures. Large distances and asymmetric distribution of the charged residues in the molecule mainly determine the observed high value. In order to analyse the influence of the resulting inhomogeneous electric field on the biological function of this electron carrier the molecular dipole moment was systematically changed. Five recombinant adrenodoxin mutants with successively reduced dipole moment (from 600 to 200 Debye) were analysed for their redox properties, their binding affinities to the redox partner proteins and for their function during electron transfer-dependent steroid hydroxylation. None of the mutants, not even the quadruple mutant K6E/K22Q/K24Q/K98E with a dipole moment reduced by about 70% showed significant changes in the protein function as compared with the unmodified adrenodoxin demonstrating that neither the formation of the transient complex nor the biological activity of the electron transfer chain of the endocrine glands was affected. This is the first experimental evidence that the high dipole moment observed in electron transfer proteins is not involved in electrostatic steering among the proteins in the redox chain.
蛋白质的偶极矩源于螺旋偶极、氢键网络以及蛋白质表面的带电基团。尽管目前尚无该假说的实验证据,但有观点认为,高蛋白偶极矩有助于呼吸、光合作用及类固醇生物合成的电子传递链中氧化还原伙伴之间的静电引导。为了探究这一假设,我们改变了电子传递蛋白肾上腺皮质铁氧还蛋白的偶极矩,并研究了其对蛋白质 - 蛋白质相互作用和电子传递的影响。在牛肾上腺皮质铁氧还蛋白(肾上腺的[2Fe - 2S]铁氧还蛋白)中,基于Adx(4 - 108)和野生型肾上腺皮质铁氧还蛋白晶体结构,计算出全长肾上腺皮质铁氧还蛋白模型的偶极矩为803德拜。分子中带电残基的大间距和不对称分布主要决定了所观察到的高值。为了分析由此产生的不均匀电场对这种电子载体生物学功能的影响,我们系统地改变了分子偶极矩。分析了五个偶极矩依次降低(从600到200德拜)的重组肾上腺皮质铁氧还蛋白突变体的氧化还原特性、它们与氧化还原伙伴蛋白的结合亲和力以及它们在电子传递依赖性类固醇羟基化过程中的功能。与未修饰肾上腺皮质铁氧还蛋白相比,没有一个突变体,甚至是偶极矩降低约70%的四重突变体K6E/K22Q/K24Q/K98E在蛋白质功能上表现出显著变化,这表明内分泌腺电子传递链的瞬时复合物形成和生物活性均未受影响。这是第一个实验证据,表明在电子传递蛋白中观察到的高偶极矩不参与氧化还原链中蛋白质之间的静电引导。