Suppr超能文献

依赖NADH的铁氧化还原蛋白还原酶与 Rieske 型[2Fe-2S]铁氧化还原蛋白之间氧化还原依赖性相互作用的分子机制。

Molecular mechanism of the redox-dependent interaction between NADH-dependent ferredoxin reductase and Rieske-type [2Fe-2S] ferredoxin.

作者信息

Senda Miki, Kishigami Shinya, Kimura Shigenobu, Fukuda Masao, Ishida Tetsuo, Senda Toshiya

机构信息

Japan Biological Information Research Center, Japan Biological Informatics Consortium, 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan.

出版信息

J Mol Biol. 2007 Oct 19;373(2):382-400. doi: 10.1016/j.jmb.2007.08.002. Epub 2007 Aug 19.

Abstract

The electron transfer system of the biphenyl dioxygenase BphA, which is derived from Acidovorax sp. (formally Pseudomonas sp.) strain KKS102, is composed of an FAD-containing NADH-ferredoxin reductase (BphA4) and a Rieske-type [2Fe-2S] ferredoxin (BphA3). Biochemical studies have suggested that the whole electron transfer process from NADH to BphA3 comprises three consecutive elementary electron-transfer reactions, in which BphA3 and BphA4 interact transiently in a redox-dependent manner. Initially, BphA4 receives two electrons from NADH. The reduced BphA4 then delivers one electron each to the [2Fe-2S] cluster of the two BphA3 molecules through redox-dependent transient interactions. The reduced BphA3 transports the electron to BphA1A2, a terminal oxygenase, to support the activation of dioxygen for biphenyl dihydroxylation. In order to elucidate the molecular mechanisms of the sequential reaction and the redox-dependent interaction between BphA3 and BphA4, we determined the crystal structures of the productive BphA3-BphA4 complex, and of free BphA3 and BphA4 in all the redox states occurring in the catalytic cycle. The crystal structures of these reaction intermediates demonstrated that each elementary electron transfer induces a series of redox-dependent conformational changes in BphA3 and BphA4, which regulate the interaction between them. In addition, the conformational changes induced by the preceding electron transfer seem to induce the next electron transfer. The interplay of electron transfer and induced conformational changes seems to be critical to the sequential electron-transfer reaction from NADH to BphA3.

摘要

源自嗜酸栖热菌(原假单胞菌属)菌株KKS102的联苯双加氧酶BphA的电子传递系统,由含黄素腺嘌呤二核苷酸(FAD)的NADH-铁氧化还原蛋白还原酶(BphA4)和 Rieske 型[2Fe-2S]铁氧化还原蛋白(BphA3)组成。生化研究表明,从NADH到BphA3的整个电子传递过程包括三个连续的基本电子转移反应,其中BphA3和BphA4以氧化还原依赖的方式短暂相互作用。最初,BphA4从NADH接收两个电子。然后,还原态的BphA4通过氧化还原依赖的短暂相互作用,将一个电子分别传递给两个BphA3分子的[2Fe-2S]簇。还原态的BphA3将电子传递给末端加氧酶BphA1A2,以支持双加氧的激活用于联苯二羟基化。为了阐明连续反应的分子机制以及BphA3和BphA4之间氧化还原依赖的相互作用,我们确定了有活性的BphA3-BphA4复合物以及催化循环中出现的所有氧化还原状态下的游离BphA3和BphA4的晶体结构。这些反应中间体的晶体结构表明,每个基本电子转移都会在BphA3和BphA4中诱导一系列氧化还原依赖的构象变化,从而调节它们之间的相互作用。此外,先前电子转移诱导的构象变化似乎会引发下一个电子转移。电子转移和诱导的构象变化之间的相互作用似乎对于从NADH到BphA3的连续电子转移反应至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验