Suppr超能文献

弓形虫蛋白质组学

Toxoplasma gondii proteomics.

作者信息

Weiss Louis M, Fiser Andras, Angeletti Ruth Hogue, Kim Kami

机构信息

Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer 504, 1300 Morris Park Avenue, Bronx, NY 10461, USA.

出版信息

Expert Rev Proteomics. 2009 Jun;6(3):303-13. doi: 10.1586/epr.09.16.

Abstract

Toxoplasma gondii is a ubiquitous, Apicomplexan parasite that, in humans, can cause several clinical syndromes, including encephalitis, chorioretinitis and congenital infection. T. gondii was described a little over 100 years ago in the tissues of the gundi (Ctenodoactylus gundi). There are a large number of applicable experimental techniques available for this pathogen and it has become a model organism for the study of intracellular pathogens. With the completion of the genomes for a type I (GT-1), type II (ME49) and type III (VEG) strains, proteomic studies on this organism have been greatly facilitated. Several subcellular proteomic studies have been completed on this pathogen. These studies have helped elucidate specialized invasion organelles and their composition, as well as proteins associated with the cytoskeleton. Global proteomic studies are leading to improved strategies for genome annotation in this organism and an improved understanding of protein regulation in this pathogen. Web-based resources, such as EPIC-DB and ToxoDB, provide proteomic data and support for studies on T. gondii. This review will summarize the current status of proteomic research on T. gondii.

摘要

刚地弓形虫是一种广泛存在的顶复门寄生虫,在人类中可引发多种临床综合征,包括脑炎、脉络膜视网膜炎和先天性感染。刚地弓形虫于100多年前在非洲梳趾鼠(栉趾鼠)的组织中被发现。针对这种病原体有大量适用的实验技术,它已成为研究细胞内病原体的模式生物。随着I型(GT-1)、II型(ME49)和III型(VEG)菌株基因组测序的完成,对该生物体的蛋白质组学研究得到了极大推动。已经完成了几项针对这种病原体的亚细胞蛋白质组学研究。这些研究有助于阐明专门的入侵细胞器及其组成,以及与细胞骨架相关的蛋白质。整体蛋白质组学研究正在为该生物体的基因组注释带来改进策略,并增进对该病原体蛋白质调控的理解。基于网络的资源,如EPIC-DB和ToxoDB,为刚地弓形虫研究提供蛋白质组学数据及支持。本综述将总结刚地弓形虫蛋白质组学研究的现状。

相似文献

1
Toxoplasma gondii proteomics.
Expert Rev Proteomics. 2009 Jun;6(3):303-13. doi: 10.1586/epr.09.16.
2
Toxoplasma: the next 100years.
Microbes Infect. 2008 Jul;10(9):978-84. doi: 10.1016/j.micinf.2008.07.015. Epub 2008 Jul 10.
3
Proteomic characterization of the subpellicular cytoskeleton of Toxoplasma gondii tachyzoites.
J Proteomics. 2014 Dec 5;111:86-99. doi: 10.1016/j.jprot.2014.03.008. Epub 2014 Mar 21.
4
ToxoDB: an integrated Toxoplasma gondii database resource.
Nucleic Acids Res. 2008 Jan;36(Database issue):D553-6. doi: 10.1093/nar/gkm981. Epub 2007 Nov 14.
6
Global Lysine Crotonylation and 2-Hydroxyisobutyrylation in Phenotypically Different Parasites.
Mol Cell Proteomics. 2019 Nov;18(11):2207-2224. doi: 10.1074/mcp.RA119.001611. Epub 2019 Sep 5.
7
[Research Advances on Toxoplasma gondii Proteomics].
Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi. 2015 Jun;33(3):214-8, 221.
9
Comparative Proteomics Analysis for Elucidating the Interaction Between Host Cells and .
Front Cell Infect Microbiol. 2021 May 13;11:643001. doi: 10.3389/fcimb.2021.643001. eCollection 2021.
10
Biogenesis of and activities at the Toxoplasma gondii parasitophorous vacuole membrane.
Subcell Biochem. 2008;47:155-64. doi: 10.1007/978-0-387-78267-6_12.

引用本文的文献

1
The proteomic content of Varroa destructor gut varies according to the developmental stage of its host.
PLoS Pathog. 2024 Dec 30;20(12):e1012802. doi: 10.1371/journal.ppat.1012802. eCollection 2024 Dec.
3
TgKDAC4: A Unique Deacetylase of ' Apicoplast.
Microorganisms. 2023 Jun 12;11(6):1558. doi: 10.3390/microorganisms11061558.
5
Mining the Proteome of Parasites Seeking Vaccine and Diagnostic Candidates.
Animals (Basel). 2022 Apr 23;12(9):1098. doi: 10.3390/ani12091098.
6
Eimeria proteins: order amidst disorder.
Parasit Vectors. 2022 Jan 24;15(1):38. doi: 10.1186/s13071-022-05159-0.
8
Global Lysine Crotonylation and 2-Hydroxyisobutyrylation in Phenotypically Different Parasites.
Mol Cell Proteomics. 2019 Nov;18(11):2207-2224. doi: 10.1074/mcp.RA119.001611. Epub 2019 Sep 5.
10
The Ubiquitin Proteome of Toxoplasma gondii Reveals Roles for Protein Ubiquitination in Cell-Cycle Transitions.
Cell Host Microbe. 2015 Nov 11;18(5):621-33. doi: 10.1016/j.chom.2015.10.014.

本文引用的文献

1
EPIC-DB: a proteomics database for studying Apicomplexan organisms.
BMC Genomics. 2009 Jan 21;10:38. doi: 10.1186/1471-2164-10-38.
2
Computational analysis and experimental validation of gene predictions in Toxoplasma gondii.
PLoS One. 2008;3(12):e3899. doi: 10.1371/journal.pone.0003899. Epub 2008 Dec 9.
3
Proteomes and transcriptomes of the Apicomplexa--where's the message?
Int J Parasitol. 2009 Jan;39(2):135-43. doi: 10.1016/j.ijpara.2008.10.003. Epub 2008 Nov 1.
4
PredGPI: a GPI-anchor predictor.
BMC Bioinformatics. 2008 Sep 23;9:392. doi: 10.1186/1471-2105-9-392.
5
Three-layer sandwich gel electrophoresis: a method of salt removal and protein concentration in proteome analysis.
J Proteome Res. 2008 Oct;7(10):4256-65. doi: 10.1021/pr800182b. Epub 2008 Sep 17.
6
The small ubiquitin-like modifier (SUMO)-conjugating system of Toxoplasma gondii.
Int J Parasitol. 2009 Jan;39(1):81-90. doi: 10.1016/j.ijpara.2008.07.009. Epub 2008 Aug 12.
8
Microneme proteins in apicomplexans.
Subcell Biochem. 2008;47:33-45. doi: 10.1007/978-0-387-78267-6_2.
9
Proteogenomics: needs and roles to be filled by proteomics in genome annotation.
Brief Funct Genomic Proteomic. 2008 Jan;7(1):50-62. doi: 10.1093/bfgp/eln010. Epub 2008 Mar 10.
10
Determining the protein repertoire of Cryptosporidium parvum sporozoites.
Proteomics. 2008 Apr;8(7):1398-414. doi: 10.1002/pmic.200700804.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验