Suppr超能文献

蛋白酶体对泛素-蛋白质缀合物的识别与加工。

Recognition and processing of ubiquitin-protein conjugates by the proteasome.

作者信息

Finley Daniel

机构信息

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Annu Rev Biochem. 2009;78:477-513. doi: 10.1146/annurev.biochem.78.081507.101607.

Abstract

The proteasome is an intricate molecular machine, which serves to degrade proteins following their conjugation to ubiquitin. Substrates dock onto the proteasome at its 19-subunit regulatory particle via a diverse set of ubiquitin receptors and are then translocated into an internal chamber within the 28-subunit proteolytic core particle (CP), where they are hydrolyzed. Substrate is threaded into the CP through a narrow gated channel, and thus translocation requires unfolding of the substrate. Six distinct ATPases in the regulatory particle appear to form a ring complex and to drive unfolding as well as translocation. ATP-dependent, degradation-coupled deubiquitination of the substrate is required both for efficient substrate degradation and for preventing the degradation of the ubiquitin tag. However, the proteasome also contains deubiquitinating enzymes (DUBs) that can remove ubiquitin before substrate degradation initiates, thus allowing some substrates to dissociate from the proteasome and escape degradation. Here we examine the key elements of this molecular machine and how they cooperate in the processing of proteolytic substrates.

摘要

蛋白酶体是一种复杂的分子机器,其作用是在蛋白质与泛素结合后将其降解。底物通过多种泛素受体停靠在蛋白酶体的19亚基调节颗粒上,然后被转运到28亚基蛋白水解核心颗粒(CP)的内部腔室中,在那里它们被水解。底物通过一个狭窄的门控通道穿入CP,因此转运需要底物展开。调节颗粒中的六种不同的ATP酶似乎形成一个环状复合物,并驱动展开和转运。底物的ATP依赖性、与降解偶联的去泛素化对于有效的底物降解和防止泛素标签的降解都是必需的。然而,蛋白酶体也含有去泛素化酶(DUBs),它们可以在底物降解开始之前去除泛素,从而使一些底物能够从蛋白酶体上解离并逃脱降解。在这里,我们研究了这个分子机器的关键元件以及它们在蛋白水解底物加工过程中的协作方式。

相似文献

1
Recognition and processing of ubiquitin-protein conjugates by the proteasome.
Annu Rev Biochem. 2009;78:477-513. doi: 10.1146/annurev.biochem.78.081507.101607.
2
Proteasome in action: substrate degradation by the 26S proteasome.
Biochem Soc Trans. 2021 Apr 30;49(2):629-644. doi: 10.1042/BST20200382.
3
Structure and Function of the 26S Proteasome.
Annu Rev Biochem. 2018 Jun 20;87:697-724. doi: 10.1146/annurev-biochem-062917-011931. Epub 2018 Apr 13.
4
Gates, Channels, and Switches: Elements of the Proteasome Machine.
Trends Biochem Sci. 2016 Jan;41(1):77-93. doi: 10.1016/j.tibs.2015.10.009. Epub 2015 Nov 28.
5
Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes.
Mol Cell Proteomics. 2011 May;10(5):R110.003871. doi: 10.1074/mcp.R110.003871. Epub 2010 Sep 7.
6
In vitro analysis of proteasome-associated USP14 activity for substrate degradation and deubiquitylation.
Methods Enzymol. 2019;619:249-268. doi: 10.1016/bs.mie.2018.12.028. Epub 2019 Feb 1.
8
An AAA Motor-Driven Mechanical Switch in Rpn11 Controls Deubiquitination at the 26S Proteasome.
Mol Cell. 2017 Sep 7;67(5):799-811.e8. doi: 10.1016/j.molcel.2017.07.023. Epub 2017 Aug 24.
9
Design principles of a universal protein degradation machine.
J Mol Biol. 2013 Jan 23;425(2):199-213. doi: 10.1016/j.jmb.2012.11.001. Epub 2012 Nov 9.
10
Meddling with Fate: The Proteasomal Deubiquitinating Enzymes.
J Mol Biol. 2017 Nov 10;429(22):3525-3545. doi: 10.1016/j.jmb.2017.09.015. Epub 2017 Oct 5.

引用本文的文献

1
3
The Ubiquitin-Proteasome System in Asthma: Mechanisms and Therapeutic Possibilities.
Clin Rev Allergy Immunol. 2025 Sep 11;68(1):86. doi: 10.1007/s12016-025-09081-y.
4
Current landscape of the immunoproteasome: implications for disease and therapy.
Cell Death Discov. 2025 Aug 25;11(1):406. doi: 10.1038/s41420-025-02698-0.
5
Computationally Driven Top-Down Mass Spectrometry of Ubiquitinated Proteins.
bioRxiv. 2025 Jul 29:2025.07.24.666707. doi: 10.1101/2025.07.24.666707.
7
Proteome solubility is differentially reshaped by thermal stress and regulators of ubiquitination.
J Biol Chem. 2025 Jul 24;301(9):110517. doi: 10.1016/j.jbc.2025.110517.
10

本文引用的文献

1
Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome.
Mol Cell. 2008 Nov 7;32(3):415-25. doi: 10.1016/j.molcel.2008.10.011.
4
Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry.
J Proteome Res. 2008 Oct;7(10):4566-76. doi: 10.1021/pr800468j. Epub 2008 Sep 10.
5
Differential effects of Usp14 and Uch-L1 on the ubiquitin proteasome system and synaptic activity.
Mol Cell Neurosci. 2008 Dec;39(4):539-48. doi: 10.1016/j.mcn.2008.07.028. Epub 2008 Aug 15.
6
Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis.
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13333-8. doi: 10.1073/pnas.0801870105. Epub 2008 Aug 29.
7
Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis.
Biol Chem. 2008 Sep;389(9):1143-51. doi: 10.1515/BC.2008.130.
8
REGgamma, a proteasome activator and beyond?
Cell Mol Life Sci. 2008 Dec;65(24):3971-80. doi: 10.1007/s00018-008-8291-z.
9
p62 serves as a shuttling factor for TrkA interaction with the proteasome.
Biochem Biophys Res Commun. 2008 Sep 12;374(1):33-7. doi: 10.1016/j.bbrc.2008.06.082. Epub 2008 Jul 1.
10
Different domains of the UBL-UBA ubiquitin receptor, Ddi1/Vsm1, are involved in its multiple cellular roles.
Mol Biol Cell. 2008 Sep;19(9):3625-37. doi: 10.1091/mbc.e07-05-0462. Epub 2008 Jun 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验