Suppr超能文献

prestin 相关电荷转移的电压和频率依赖性。

Voltage and frequency dependence of prestin-associated charge transfer.

机构信息

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

J Theor Biol. 2009 Sep 7;260(1):137-44. doi: 10.1016/j.jtbi.2009.05.019. Epub 2009 May 31.

Abstract

Membrane protein prestin is a critical component of the motor complex that generates forces and dimensional changes in cells in response to changes in the cell membrane potential. In its native cochlear outer hair cell, prestin is crucial to the amplification and frequency selectivity of the mammalian ear up to frequencies of tens of kHz. Other cells transfected with prestin acquire voltage-dependent properties similar to those of the native cell. The protein performance is critically dependent on chloride ions, and intrinsic protein charges also play a role. We propose an electro-diffusion model to reveal the frequency and voltage dependence of electric charge transfer by prestin. The movement of the combined charge (i.e., anion and protein charges) across the membrane is described with a Fokker-Planck equation coupled to a kinetic equation that describes the binding of chloride ions to prestin. We found a voltage- and frequency-dependent phase shift between the transferred charge and the applied electric field that determines capacitive and resistive components of the transferred charge. The phase shift monotonically decreases from zero to -90 degrees as a function of frequency. The capacitive component as a function of voltage is bell-shaped, and decreases with frequency. The resistive component is bell-shaped for both voltage and frequency. The capacitive and resistive components are similar to experimental measurements of charge transfer at high frequencies. The revealed nature of the transferred charge can help reconcile the high-frequency electrical and mechanical observations associated with prestin, and it is important for further analysis of the structure and function of this protein.

摘要

膜蛋白 prestin 是产生力和细胞维度变化的运动复合物的关键组成部分,以响应细胞膜电位的变化。在其天然的耳蜗外毛细胞中,prestin 对于哺乳动物耳朵的放大和频率选择性至关重要,频率高达数十 kHz。转染 prestin 的其他细胞获得类似于天然细胞的电压依赖性特性。蛋白质性能严重依赖于氯离子,并且固有蛋白质电荷也起作用。我们提出了一个电扩散模型,以揭示 prestin 的电荷转移的频率和电压依赖性。跨膜的组合电荷(即阴离子和蛋白质电荷)的运动用描述氯离子与 prestin 结合的动力方程耦合的福克-普朗克方程来描述。我们发现,传递电荷和外加电场之间存在电压和频率相关的相移,这决定了传递电荷的电容和电阻分量。相移随频率从零单调减小到-90 度。作为电压的函数的电容分量呈钟形,并且随频率减小。作为电压和频率的函数的电阻分量呈钟形。电容和电阻分量与高频下的电荷传递的实验测量相似。揭示传递电荷的性质可以帮助协调与 prestin 相关的高频电和机械观察,并对该蛋白质的结构和功能进行进一步分析很重要。

相似文献

1
Voltage and frequency dependence of prestin-associated charge transfer.
J Theor Biol. 2009 Sep 7;260(1):137-44. doi: 10.1016/j.jtbi.2009.05.019. Epub 2009 May 31.
2
Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.
Biophys J. 2016 Jun 7;110(11):2551-2561. doi: 10.1016/j.bpj.2016.05.002.
3
The Frequency Response of Outer Hair Cell Voltage-Dependent Motility Is Limited by Kinetics of Prestin.
J Neurosci. 2018 Jun 13;38(24):5495-5506. doi: 10.1523/JNEUROSCI.0425-18.2018. Epub 2018 May 21.
4
Effect of membrane mechanics on charge transfer by the membrane protein prestin.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):107-18. doi: 10.1007/s10237-011-0296-0. Epub 2011 Mar 2.
5
Modeling electrically active viscoelastic membranes.
PLoS One. 2012;7(5):e37667. doi: 10.1371/journal.pone.0037667. Epub 2012 May 31.
7
The potential and electric field in the cochlear outer hair cell membrane.
Med Biol Eng Comput. 2015 May;53(5):405-13. doi: 10.1007/s11517-015-1248-0. Epub 2015 Feb 17.
8
Cochlear amplification, outer hair cells and prestin.
Curr Opin Neurobiol. 2008 Aug;18(4):370-6. doi: 10.1016/j.conb.2008.08.016. Epub 2008 Oct 4.
10
Prestin-driven cochlear amplification is not limited by the outer hair cell membrane time constant.
Neuron. 2011 Jun 23;70(6):1143-54. doi: 10.1016/j.neuron.2011.04.024.

引用本文的文献

2
Complex nonlinear capacitance in outer hair cell macro-patches: effects of membrane tension.
Sci Rep. 2020 Apr 10;10(1):6222. doi: 10.1038/s41598-020-63201-6.
3
Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.
Biophys J. 2016 Jun 7;110(11):2551-2561. doi: 10.1016/j.bpj.2016.05.002.
4
The potential and electric field in the cochlear outer hair cell membrane.
Med Biol Eng Comput. 2015 May;53(5):405-13. doi: 10.1007/s11517-015-1248-0. Epub 2015 Feb 17.
5
Modeling electrically active viscoelastic membranes.
PLoS One. 2012;7(5):e37667. doi: 10.1371/journal.pone.0037667. Epub 2012 May 31.
6
Membrane cholesterol modulates cochlear electromechanics.
Pflugers Arch. 2011 Jun;461(6):677-86. doi: 10.1007/s00424-011-0942-5. Epub 2011 Mar 4.
7
Effect of membrane mechanics on charge transfer by the membrane protein prestin.
Biomech Model Mechanobiol. 2012 Jan;11(1-2):107-18. doi: 10.1007/s10237-011-0296-0. Epub 2011 Mar 2.
8
Cell membrane tethers generate mechanical force in response to electrical stimulation.
Biophys J. 2010 Aug 4;99(3):845-52. doi: 10.1016/j.bpj.2010.05.025.
9
MEX-5 enrichment in the C. elegans early embryo mediated by differential diffusion.
Development. 2010 Aug 1;137(15):2579-85. doi: 10.1242/dev.051326.
10
The remarkable cochlear amplifier.
Hear Res. 2010 Jul;266(1-2):1-17. doi: 10.1016/j.heares.2010.05.001.

本文引用的文献

1
Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification.
Neuron. 2008 May 8;58(3):333-9. doi: 10.1016/j.neuron.2008.02.028.
2
Outer hair cell active force generation in the cochlear environment.
J Acoust Soc Am. 2007 Oct;122(4):2215-25. doi: 10.1121/1.2776154.
3
Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers.
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7693-8. doi: 10.1073/pnas.0608583104. Epub 2007 Apr 18.
4
Essential helix interactions in the anion transporter domain of prestin revealed by evolutionary trace analysis.
J Neurosci. 2006 Dec 6;26(49):12727-34. doi: 10.1523/JNEUROSCI.2734-06.2006.
5
Electromechanical models of the outer hair cell composite membrane.
J Membr Biol. 2006 Feb-Mar;209(2-3):135-52. doi: 10.1007/s00232-005-0843-7. Epub 2006 May 25.
6
Tuning in to the amazing outer hair cell: membrane wizardry with a twist and shout.
J Membr Biol. 2006 Feb-Mar;209(2-3):119-34. doi: 10.1007/s00232-005-0833-9. Epub 2006 May 25.
7
Lateral diffusion anisotropy and membrane lipid/skeleton interaction in outer hair cells.
Biophys J. 2006 Jul 1;91(1):364-81. doi: 10.1529/biophysj.105.076331. Epub 2006 Apr 7.
8
An anion antiporter model of prestin, the outer hair cell motor protein.
Biophys J. 2006 Jun 1;90(11):4035-45. doi: 10.1529/biophysj.105.073254. Epub 2006 Mar 24.
9
N-terminal-mediated homomultimerization of prestin, the outer hair cell motor protein.
Biophys J. 2005 Nov;89(5):3345-52. doi: 10.1529/biophysj.105.068759. Epub 2005 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验