Department of Biomedical Science, University of Sheffield, Sheffield S102TN, UK.
Neuron. 2011 Jun 23;70(6):1143-54. doi: 10.1016/j.neuron.2011.04.024.
Outer hair cells (OHCs) provide amplification in the mammalian cochlea using somatic force generation underpinned by voltage-dependent conformational changes of the motor protein prestin. However, prestin must be gated by changes in membrane potential on a cycle-by-cycle basis and the periodic component of the receptor potential may be greatly attenuated by low-pass filtering due to the OHC time constant (τ(m)), questioning the functional relevance of this mechanism. Here, we measured τ(m) from OHCs with a range of characteristic frequencies (CF) and found that, at physiological endolymphatic calcium concentrations, approximately half of the mechanotransducer (MT) channels are opened at rest, depolarizing the membrane potential to near -40 mV. The depolarized resting potential activates a voltage-dependent K+ conductance, thus minimizing τ(m) and expanding the membrane filter so there is little receptor potential attenuation at the cell's CF. These data suggest that minimal τ(m) filtering in vivo ensures optimal activation of prestin.
外毛细胞 (OHC) 通过电压依赖性运动蛋白 prestin 的构象变化来产生体力,从而在哺乳动物耳蜗中提供放大作用。然而, prestin 必须在每个循环的基础上通过膜电位的变化来门控,并且由于 OHC 时间常数 (τ(m)),受体电位的周期性分量可能会被低通滤波大大衰减,这质疑了这种机制的功能相关性。在这里,我们从具有一系列特征频率 (CF) 的 OHC 中测量了 τ(m),并发现,在生理内淋巴钙浓度下,大约一半的机械转导 (MT) 通道在休息时打开,将膜电位去极化至接近 -40 mV。去极化的静息电位激活电压依赖性 K+ 电导,从而最小化 τ(m) 并扩展膜滤波器,因此在细胞的 CF 处几乎没有受体电位衰减。这些数据表明,体内最小的 τ(m) 滤波可确保 prestin 的最佳激活。