Suppr超能文献

在阿尔茨海默病中,磷酸化 Tau 与 c-Jun 氨基末端激酶相互作用蛋白 1(JIP1)相互作用。

Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease.

作者信息

Ittner Lars M, Ke Yazi D, Götz Jürgen

机构信息

Alzheimer's and Parkinson's Disease Laboratory, Brain and Mind Research Institute, University of Sydney, Sydney, Camperdown, New South Wales 2050, Australia.

出版信息

J Biol Chem. 2009 Jul 31;284(31):20909-16. doi: 10.1074/jbc.M109.014472. Epub 2009 Jun 2.

Abstract

In Alzheimer disease (AD) and frontotemporal dementia the microtubule-associated protein Tau becomes progressively hyperphosphorylated, eventually forming aggregates. However, how Tau dysfunction is associated with functional impairment is only partly understood, especially at early stages when Tau is mislocalized but has not yet formed aggregates. Impaired axonal transport has been proposed as a potential pathomechanism, based on cellular Tau models and Tau transgenic mice. We recently reported K369I mutant Tau transgenic K3 mice with axonal transport defects that suggested a cargo-selective impairment of kinesin-driven anterograde transport by Tau. Here, we show that kinesin motor complex formation is disturbed in the K3 mice. We show that under pathological conditions hyperphosphorylated Tau interacts with c-Jun N-terminal kinase- interacting protein 1 (JIP1), which is associated with the kinesin motor protein complex. As a result, transport of JIP1 into the axon is impaired, causing JIP1 to accumulate in the cell body. Because we found trapping of JIP1 and a pathological Tau/JIP1 interaction also in AD brain, this may have pathomechanistic implications in diseases with a Tau pathology. This is supported by JIP1 sequestration in the cell body of Tau-transfected primary neuronal cultures. The pathological Tau/JIP1 interaction requires phosphorylation of Tau, and Tau competes with the physiological binding of JIP1 to kinesin light chain. Because JIP1 is involved in regulating cargo binding to kinesin motors, our findings may, at least in part, explain how hyperphosphorylated Tau mediates impaired axonal transport in AD and frontotemporal dementia.

摘要

在阿尔茨海默病(AD)和额颞叶痴呆中,微管相关蛋白Tau逐渐过度磷酸化,最终形成聚集体。然而,Tau功能障碍与功能损害之间的关联仅得到部分理解,尤其是在Tau定位错误但尚未形成聚集体的早期阶段。基于细胞Tau模型和Tau转基因小鼠,轴突运输受损被认为是一种潜在的病理机制。我们最近报道了K369I突变型Tau转基因K3小鼠存在轴突运输缺陷,这表明Tau对驱动蛋白驱动的顺行运输具有货物选择性损害。在此,我们表明K3小鼠中驱动蛋白运动复合体的形成受到干扰。我们发现,在病理条件下,过度磷酸化的Tau与c-Jun氨基末端激酶相互作用蛋白1(JIP1)相互作用,而JIP1与驱动蛋白运动蛋白复合体相关。结果,JIP1向轴突的运输受损,导致JIP1在细胞体中积累。因为我们在AD大脑中也发现了JIP1的滞留以及病理性Tau/JIP1相互作用,这可能对具有Tau病理学的疾病具有病理机制意义。Tau转染的原代神经元培养物的细胞体中JIP1的隔离支持了这一点。病理性Tau/JIP1相互作用需要Tau的磷酸化,并且Tau与JIP1与驱动蛋白轻链的生理性结合竞争。由于JIP1参与调节货物与驱动蛋白马达的结合,我们的发现可能至少部分解释了过度磷酸化的Tau如何介导AD和额颞叶痴呆中的轴突运输受损。

相似文献

1
Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease.
J Biol Chem. 2009 Jul 31;284(31):20909-16. doi: 10.1074/jbc.M109.014472. Epub 2009 Jun 2.
2
Quantitative analysis of APP axonal transport in neurons: role of JIP1 in enhanced APP anterograde transport.
Mol Biol Cell. 2014 Nov 5;25(22):3569-80. doi: 10.1091/mbc.E14-06-1111. Epub 2014 Aug 27.
3
JNK-interacting protein 1 mediates Alzheimer's-like pathological features in AICD-transgenic mice.
Neurobiol Aging. 2015 Aug;36(8):2370-9. doi: 10.1016/j.neurobiolaging.2015.04.013. Epub 2015 Apr 30.
4
The JIP1 scaffold protein regulates axonal development in cortical neurons.
Curr Biol. 2008 Feb 12;18(3):221-6. doi: 10.1016/j.cub.2008.01.025.
5
JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors.
J Cell Biol. 2013 Aug 5;202(3):495-508. doi: 10.1083/jcb.201302078. Epub 2013 Jul 29.
6
Axonal stress kinase activation and tau misbehavior induced by kinesin-1 transport defects.
J Neurosci. 2009 May 6;29(18):5758-67. doi: 10.1523/JNEUROSCI.0780-09.2009.
8
Hyperphosphorylation of JNK-interacting protein 1, a protein associated with Alzheimer disease.
Mol Cell Proteomics. 2006 Jan;5(1):97-113. doi: 10.1074/mcp.M500226-MCP200. Epub 2005 Sep 29.
9
Soluble Conformers of Aβ and Tau Alter Selective Proteins Governing Axonal Transport.
J Neurosci. 2016 Sep 14;36(37):9647-58. doi: 10.1523/JNEUROSCI.1899-16.2016.
10

引用本文的文献

2
Role of Tau Protein Hyperphosphorylation in Diabetic Retinal Neurodegeneration.
J Ophthalmol. 2025 Mar 12;2025:3278794. doi: 10.1155/joph/3278794. eCollection 2025.
3
RhoA/ROCK/GSK3β Signaling: A Keystone in Understanding Alzheimer's Disease.
Curr Issues Mol Biol. 2025 Feb 14;47(2):124. doi: 10.3390/cimb47020124.
4
Unraveling the role and mechanism of mitochondria in postoperative cognitive dysfunction: a narrative review.
J Neuroinflammation. 2024 Nov 12;21(1):293. doi: 10.1186/s12974-024-03285-3.
5
Locus coeruleus vulnerability to tau hyperphosphorylation in a rat model.
Aging Cell. 2025 Mar;24(3):e14405. doi: 10.1111/acel.14405. Epub 2024 Nov 9.
6
Efficacy of exercise rehabilitation for managing patients with Alzheimer's disease.
Neural Regen Res. 2024 Oct 1;19(10):2175-2188. doi: 10.4103/1673-5374.391308. Epub 2023 Dec 21.
7
MSUT2 regulates tau spreading via adenosinergic signaling mediated ASAP1 pathway in neurons.
Acta Neuropathol. 2024 Mar 12;147(1):55. doi: 10.1007/s00401-024-02703-3.
8
Understanding Glycogen Synthase Kinase-3: A Novel Avenue for Alzheimer's Disease.
Mol Neurobiol. 2024 Jul;61(7):4203-4221. doi: 10.1007/s12035-023-03839-1. Epub 2023 Dec 8.
9
Common mechanisms underlying axonal transport deficits in neurodegenerative diseases: a mini review.
Front Mol Neurosci. 2023 Apr 24;16:1172197. doi: 10.3389/fnmol.2023.1172197. eCollection 2023.
10
TDP-43 pathology and functional deficits in wild-type and ALS/FTD mutant cyclin F mouse models.
Neuropathol Appl Neurobiol. 2023 Apr;49(2):e12902. doi: 10.1111/nan.12902.

本文引用的文献

1
Primary support cultures of hippocampal and substantia nigra neurons.
Nat Protoc. 2009;4(1):78-85. doi: 10.1038/nprot.2008.199.
2
Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia.
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15997-6002. doi: 10.1073/pnas.0808084105. Epub 2008 Oct 2.
3
Animal models of Alzheimer's disease and frontotemporal dementia.
Nat Rev Neurosci. 2008 Jul;9(7):532-44. doi: 10.1038/nrn2420.
4
Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin.
FASEB J. 2008 Sep;22(9):3186-95. doi: 10.1096/fj.08-109181. Epub 2008 May 29.
5
Loss of progranulin function in frontotemporal lobar degeneration.
Trends Genet. 2008 Apr;24(4):186-94. doi: 10.1016/j.tig.2008.01.004. Epub 2008 Mar 6.
6
Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice.
J Neurosci. 2008 Feb 13;28(7):1682-7. doi: 10.1523/JNEUROSCI.5242-07.2008.
7
Differential regulation of dynein and kinesin motor proteins by tau.
Science. 2008 Feb 22;319(5866):1086-9. doi: 10.1126/science.1152993. Epub 2008 Jan 17.
8
Control of a kinesin-cargo linkage mechanism by JNK pathway kinases.
Curr Biol. 2007 Aug 7;17(15):1313-7. doi: 10.1016/j.cub.2007.06.062. Epub 2007 Jul 19.
9
Tau binding to microtubules does not directly affect microtubule-based vesicle motility.
J Neurosci Res. 2007 Sep;85(12):2620-30. doi: 10.1002/jnr.21154.
10
Two binding partners cooperate to activate the molecular motor Kinesin-1.
J Cell Biol. 2007 Jan 1;176(1):11-7. doi: 10.1083/jcb.200605099.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验